
	

Secure Decentralized File Sharing (SDFS)
Network

Janine Terrano (j9@topiatechnology.com)

John Haager (jhaager@topiatechnology.com)

Cody Sandwith (csandwith@topiatechnology.com)

Jeff Pack (jpack@topiatechnology.com)

August 8, 2018

V9.0

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 2

Executive Summary

The rise of blockchains has created an inflection point that is driving the

creation of a new "decentralized Internet". With the rise of decentralized
blockchain-based cryptocurrencies like Bitcoin and Ethereum,

momentum for the creation of a decentralized Internet has surged.
Numerous projects offer pieces of this decentralized Internet, from name

lookup services to a world-wide shared storage system. But a
decentralized data layer for the decentralized applications (dApps) being

built on top of the blockchain is missing.

The Secure Decentralized File Sharing (SDFS) network is designed to

provide decentralized applications with a secure, point-to-point data layer
that enables data exchange between instances of an application using

secure micro-networks. Data and digital assets can be securely sent to
other application instances and will be automatically shredded and

encrypted using Topia Technology's world-class encryption technology;
this ensures that the data is available only to intended application
instances and users.

Using the SDFS network and its secure micro-networks in the SDFS
libraries, developers of dApps and manufacturers of IoT devices can build

security into their products from the ground up. These libraries will
simplify the process of securing devices and software. Using the SDFS

network, movement of data between devices, applications, and servers is
secured by the micro-networks without requiring each developer or

manufacturer to create their own security solutions. Instead, developers
build on top of SDFS’ tried and tested technology, and their users,

devices, and data will be protected.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 3

By combining blockchain, file-sharing protocols, and proven data security
methods, the SDFS network fills the gap and enables developers to

leverage the decentralized Internet to power their decentralized
applications. The SDFS network will create the secure data layer that will

allow the future decentralized Internet to achieve its full potential.

Introduction

Blockchains can revolutionize

the Internet and power the
decentralized networks of the

future because they can
securely record transactions

and activity in a network.
However, blockchains by

themselves will not solve every issue inherent in a truly decentralized
network. Many gaps exist between blockchains and the full stack

necessary to power the decentralized Internet. There are solutions to
bridge some of these gaps, but the ability to securely exchange data in a

manner that prevents unwanted disclosure is still needed.

Currently, data is shared between systems in this way: clients contact

servers to request information and servers send the requested
information back to the clients. When security is required, clients

establish SSL/TLS protected connections to encrypt data flowing
between the client and server.

Using SSL/TLS to protect data connections necessarily depends on the
centralized certificate authority system underpinning the secure Internet
of today. These certificate authorities act as gatekeepers, controlling

access to the digital certificates necessary to establish secure

The	SDFS	network	
will	create	the	secure	
data	layer	that	will	
allow	the	future	
decentralized	

Internet	to	achieve	
its	full	potential.	

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 4

connections. In a decentralized Internet, such gatekeepers will be
unwanted and undesirable. This presents a challenge when establishing

trust.

While existing peer-to-peer systems allow clients to communicate directly

with one another, they represent a fraction of the traffic compared to
traditional client-server-based counterparts. There are many challenges

to adapting the client-server model to decentralized applications running
in a decentralized Internet. Application users don't want to rely on

centralized systems for accessing data, and blockchains are not
designed to store high-volume data. This leaves a gap when securely

transferring data between instances of a decentralized application.

The blockchain market has fostered the development of several

decentralized file storage solutions, including FileCoin, Storj, and

MaidSafe. Each promises users access to high-volume storage
distributed across the Internet and the opportunity to rent out their
unused storage capacity to other users. But these solutions are limited to

allowing users to store and access their content. Currently, no solution
allows application-level data sharing or enables an application to send

data across the network to other instances of itself.

Solution

The SDFS network will provide decentralized applications with a secure,

point-to-point, micro-network-based data layer that allows the exchange
of data between instances of an application across a decentralized

network. The micro-networks allow data and digital assets to be securely
sent to other application instances and will automatically shred and

encrypt the assets using Topia Technology's world-class encryption

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 5

technology; this ensures that the data is available only to the application
instances for which it is intended.

The SDFS network acts as a “support network” for individual micro-
networks, providing blockchain hosting and data replication services.

Since blockchains require an active node running to maintain continuity
of the chain, the support network hosts micro-network blockchains on

high-availability systems. These systems provide reliable blockchain
hosting while maintaining the security of the micro-network’s encrypted

content.

The SDFS network adopts techniques from the peer-to-peer and

blockchain worlds to create a system to transfer digital assets securely
between application instances while eliminating the need for a centralized

server. By combining blockchain protocols, peer-to-peer data transfers,
and the data security technology of Secratai, developers can easily and

securely transfer digital assets between users of their decentralized
applications; the blockchain provides a cryptographically secure log of all

data transfers and ensures that only authorized users can access the
assets being sent across the network.

The SDFS data layer will allow applications to: 1. establish containers for
digital assets and 2. invite other application instances/users to access the
container. This way, decentralized applications can securely exchange

data between instances and retain their ability to interact with public
blockchains to accomplish their primary function.

Addressing Performance of Large Blockchains

Public blockchains may be hampered by their sheer size; bootstrapping

a new node onto a public blockchain may require transfer of tens or
hundreds of Gigabytes of data. For example, the Bitcoin blockchain is

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 6

currently over 170 GBii, requiring hours or days to synchronize a new
node. SDFS addresses this issue by allowing the developer to run

outside the public blockchain in most cases. These much smaller chains
allow faster operation.

Secure Collaboration Application

To demonstrate the SDFS network and its capabilities, Topia Technology
will use the data layer libraries and SDFS network to develop a Secure

Collaboration suite. This suite will allow users to create secure
collaboration spaces via SDFS containers. Files and digital assets

uploaded to these collaboration spaces will be shredded and encrypted
to ensure security. When invited to the collaboration space, other users

may view and modify existing assets or add new ones. Users can send
secure messages to each other in the collaboration space, which allows

them to coordinate on projects.

The Secure Collaboration

suite will provide users
with an intuitive UI that

includes a list of all of the
collaboration spaces

where they are members.
Each collaboration space

will show all files and
digital assets contained therein, along with any messages left by

members. The application will include address books and auto-discovery
that allow members to invite new users using email addresses.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 7

Topia Technology plans to develop clients for Windows desktops, iOS
mobile devices, and Android devices. All software versions will include

full SDFS network capabilities and ensure full end-to-end encryption.

SDFS Use Cases

The SDFS network enables the development of applications that allow
users to work together securely. Selected application use cases are
described below.

SDFS Secure Messaging Application

A company requiring secure communication between employees
can create a Secure Messaging application on top of the SDFS

network. Initiating a secure communication with another user
would automatically create a secure container. Messages

between users would be encrypted and the action stored in
the container blockchain. Files attached to messages would be

automatically and securely uploaded to the container using SDFS’s
secure digital asset-sharing capability and then recorded in the

container blockchain. The application could allow file editing of
using SDFS to do a secure and encrypted download of the asset

to a software editing program, with the result being encrypted and
uploaded back to the container.

Lawyers, CPAs, and other Professional Services Providers

Lawyers, CPAs, and other professional service providers need to
be able to exchange confidential documents with their clients. An

application can be created using the SDFS network and API to
allow such exchanges. Using an SDFS-based application, they

could track the documents they shared with their clients, ensure
that they were delivered securely, receive sensitive documents

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 8

from their clients, and securely communicate without fear of
eavesdropping or disclosure of sensitive digital assets. SDFS

would handle the creation of a container for the digital asset, as
well as the secure transfer and messaging between Service

Provider and client. A payment system could also be added to the
SDFS-based application, with the container blockchain recording

the transaction.

Delivery of Digital Assets for Online Sales

A company that needs to securely process the sale and delivery of
digital assets (such as movies, music, or electronic tickets) could
use the SDFS network and data layer libraries to streamline the

delivery process. Using the SDFS network, the company would be
able to securely deliver both the purchased digital assets and a

sales receipt. SDFS ensures the security of the delivered assets,
preventing theft or loss, and creating an immutable log of the

delivery process. The company's application would, upon
completion of a sale, create a container for delivery of the

purchased assets. It would then place copies of the purchased
assets, along with the purchase receipt, into the container. These

actions, along with the invitation of the purchaser to the container,
would be recorded in the container's blockchain. When the

purchaser accesses the container to retrieve their purchased
assets, the blockchain would be updated to record their
acceptance of the digital assets, providing a record to the

company of the successful delivery. Once the transaction is
complete, the company's application could keep the container and

its contents for as long as needed, discarding it after an
appropriate period of time.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 9

SDFS Differentiators

The market for blockchain-based decentralized file storage applications is

largely served by products like FileCoin, StorJ, and MaidSafe. Each of
these products focuses on allowing a user to store and access their

content. None of these products focuses on the problem of securely
sharing information and digital assets. SDFS focuses on this important

aspect.

SDFS addresses the need for sharing digital assets by providing a secure
data layer to reliably and securely transfer data and digital assets

between application instances. Once digital assets have been created
and stored, the next step in a typical application involves collaborating

with other applications using the digital assets. The SDFS network
provides a secure data layer that allows applications to distribute digital

assets to other instances in a manner that maintains asset integrity and
security. Using the support network, these secure micro-networks can

provide high-availability of both blockchains and digital assets even when
individual users are not online. As part of its data transfer capabilities,
the SDFS data layer can distribute digital assets to other members as

well as provide secure replication and high availability through the
support network.

To meet rigorous security requirements, SDFS uses Topia’s hardened
security methods to shred and encrypt digital assets before they are

stored on the decentralized network. This protects digital assets and
ensures that only authorized users can access necessary decryption

keys.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 10

Token Economy

As part of the launch of the SDFS network, Topia Technology will release

a new cryptocurrency token known as TopiaCoin. Within the SDFS
network, this token will be used to pay for services as well as to reward

users who contribute to network health.

In the TopiaCoin economy, token uses range from paying fees associated
with the container creation and replication of digital assets to serving as a

value exchange medium in applications built on the SDFS network.

Figure	1	-	Currency	flow	through	the	SDFS	ecosystem.	

TopiaCoin will be used to pay container creation fees. These fees will be

kept low and will allow users to securely transfer digital assets to other

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 11

SDFS users. This fee may be divided between Topia Technology and 3rd-
party developers based on a negotiated split. In certain cases, Topia

Technology, or 3rd-party application developers, may choose to
underwrite the container creation cost by covering the creation fee.

Within a container, TopiaCoin is used to power the transfer and
replication of digital assets amongst the container’s members.

Applications that want upload digital assets will deposit a small amount
of TopiaCoin into the container to cover the cost of paying the other

members to replicate the digital assets for high availability. Periodically,
applications that provide the replication service will provide proof of

replication, which will allow them to earn a small amount of TopiaCoin
paid by the asset owner. This payment will be deducted from the

owner’s account and credited to the replicator’s account.

3rd-party developers will be able to accept TopiaCoin as a first-class

currency for payments within their applications. Since the SDFS network
can already handle transactions, 3rd-party developers can leverage this

capability to handle payment transfers on behalf of users for products
other than SDFS containers and replication services.

Topia Technology will offer a bug bounty on defects discovered in SDFS
libraries. Payments on these bounties will be made in TopiaCoin.

Finally, TopiaCoin will be directly exchangeable between users. This may

allow a user to "tip" another user in exchange for a designated service.

There is no planned currency inflation in TopiaCoin. However, Topia

Technology reserves the right to issue additional tokens in the future.
These tokens would be issued in a manner that ensures the functionality

of the SDFS ecosystem, generates additional benefits for users of the

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 12

system, and meets market demand. Topia Technology will not engage in
any new token issuance within 3 years of network launch.

3rd Party Development Libraries

While building the SDFS network, Topia will develop and release a set of

open-source libraries that will enable applications to be developed on top
of the secure decentralized network. The SDFS libraries will provide a
turnkey infrastructure improving time to market for solution providers. The

decentralized, secure, non-repudiable and data transfer infrastructure
enabled by the SDFS libraries will allow developers to focus on

developing their own applications and the digital assets they need to
move across the network.

These libraries will encapsulate all blockchain activity and all peer-to-peer
interactions required for SDFS; the libraries will also provide developers a

straightforward, fully functional API for developing end user applications.
This includes: the APIs for the creation of new secure containers; the

addition and replication of digital assets; and the transfer of TopiaCoin to
other users or accounts. To user SDFS, a 3rd party dApp developer

loads the SDFS library into their dApp and uses its API to create a
container, invite members, and share files.

These libraries will be developed in the open as the product matures
toward launch and will be available on a public source repository system,

such as GitHub. As part of maintaining the libraries after network launch,
Topia Technology will offer a bug bounty program that will reward users

and developers who report issues in the libraries.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 13

SDFS Support Network

The SDFS Support Network is made up of systems that offer their CPU

and storage to other SDFS users and host micro-network blockchains.
Thus, end user systems do not need to run individual blockchains; rather,

this requirement offloaded onto higher-power systems whose purpose is
to host these blockchains and provide data replication. Support Network
nodes are compensated in TopiaCoin for the use of their systems. These

fees are paid by users who host their blockchains or replicate data on the
node.

To ensure that Support Network nodes function properly, SDFS requires
that all systems wishing to participate in the Support Network stake

TopiaCoin as a guarantee. Nodes that do not fulfill their obligations or
that fail to provide the agreed upon service lose some of their staked

tokens. If a node’s staked tokens falls below a certain threshold, the
node can no longer participate in the Support Network.

Support Network nodes must stake TopiaCoin with the SDFS Master
Smart Contract (SMSC) to be registered with the Support Network.

dApps using SDFS communicate with the SMSC to locate a Support
Network node that is available to host a new micro-network. Once a

node has been identified, the SDFS library will contact the node, request
the creation of a new blockchain, and use that new blockchain to set up a

new container. If the user or dApp needs to provide redundancy and
high-availability, the SMSC will be further queried to identify additional

Support Network nodes. The nodes can be contacted and asked to join
an existing micro-network or to provide data replication for micro-

network content. These nodes will then join the blockchain, start
providing consensus within the micro-network, and replicate secured
data on behalf of users.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 14

To ensure that Support Network nodes meet expected service levels for
high availability, they must regularly check in with the SMSC to report the

status of the blockchains they are hosting and the data they are
replicating. Nodes that fail to check in forfeit a portion of their staked

tokens. If a node loses too many staked tokens, it is downgraded in the
smart contract, and fewer blockchains are directed to it for hosting.

Eventually, the SMSC will stop sending any blockchains to them. This
provides incentive for Support Network nodes to maintain high availability

and reliability for hosted blockchains.

Solution Design

SDFS starts by defining a container, which is a place where digital assets
can be securely shared among a known set of application instances.

Unlike traditional peer-to-peer systems, access to a container is by
invitation only. The existence and management of these containers is

accomplished using blockchains. The blockchains provide a
cryptographically secure digital ledger where all transactions that occur
within a container are recorded.

Once the container is established, digital assets can be added to it. The
transfer of the actual data that make up these assets is accomplished

using peer-to-peer data transfers.

Defining and Syncing Shared Containers

Secure SDFS containers are defined on the blockchain using a Smart
Contract. This Smart Contract stores the container’s metadata and
membership information. Creating a new container involves:

• creation of the micro-network blockchain that will host the

container,

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 15

• setting the name and description of the container, and

• recording the creator as a member and saving their encrypted
copy of the container's key.

Once these steps are complete, the container can be used.

As new members are invited to the container, their clients connect to the

blockchain to retrieve the container’s current state. Whenever the state
of the container changes, all members will receive updates via the

blockchain and can query the smart contract to retrieve updated
container information.

To ensure that no data stored in the blockchain is unintentionally
disclosed, the information stored in the smart contract must be protected

by encrypting the information using the container key. Because each
member of the container receives a copy of the key encrypted using their

unique public key, the key itself is secured and the data in the blockchain
is protected from inadvertent disclosure. Only invited members can read

the state of the container.

Members can share digital assets and exchange data using peer-to-peer

data sharing techniques as described later in this document. Members
will have a reliable, secured record that describes the state of the

container and can access the digital assets stored in the container
without needing a central server.

Micro-Networks

SDFS is built to maintain privacy and security both for users and for the
contents of their containers. This is accomplished by encrypting data

and metadata, as well as through the use of micro-networks. These

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 16

micro-networks involve using private blockchains for storing and
exchanging container state, as well as using peer-to-peer transfer of

encrypted data chunks. Basically, each of the member node of the
container runs the blockchain and exchanges transactions, blocks, and

state with one another; member nodes also host and share the encrypted
data chunks with each other. In this mode, all nodes can maintain a

shared state and can access all of the encrypted data stored in the
container without having to reveal the existence of the container, or the

identity of container members, to any outside party.

While completely private micro-networks provide excellent security,

issues arise when the network is made of transient or unreliable nodes.
For the network to maintain a consistent, coherent state, nodes must

remain online. While the network can work in a somewhat degraded
mode when some of the nodes are offline, at a certain point, the network

will become difficult or impossible to use.

Should all nodes ever go offline, the network will become extremely

difficult to recover when the nodes come back online: returning nodes
have no way of knowing the blockchain’s current state because there are

no other nodes from which to obtain that state. If a node simply resumes
operation from its last known state, it risks creation of a fork in the
blockchain. When other nodes with longer blockchains come online,

network nodes are forced to resolve the fork, and may need to discard
transactions and blocks that contained user operations, which now must

be re-executed on the newly reconciled blockchain. In a worst-case
scenario, there is a high possibility of data loss; this could occur multiple

times, as each node that comes up has a different, possibly longer, fork
of the blockchain.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 17

To mitigate this risk, at least one node of the blockchain must remain
online and operational at all times. This way, when a second node comes

online, it can pull the current blockchain state from the running node and
catch up to the blockchain head without causing a fork. While this

mitigation theoretically works, in practice it is challenging to ensure. In
today's mobile-device dominated world, most, if not all, members of a

container will operate from mobile devices that cannot run blockchain
software. One or more users must have an always-on desktop system

running the blockchain software for the container to: 1. provide a contact
point for mobile devices, and 2. to act as a central clearinghouse for

distribution and storage of the encrypted data chunks.

Such a system may work for power users, but it is unwieldy for novice

and non-technical users. This leads to the solution of using external
systems to host the micro-network on behalf of the container’s members.

This system is known as the SDFS Support Network.

Support Network

The SDFS Support Network provides long-running, reliable nodes that

host blockchains and data storage and distribution services on behalf of
other SDFS network users.

The SDFS Support Network comprises highly-available systems that offer
their CPU and storage capacity to other SDFS users in exchange for a

fee. These nodes can host a number of micro-network blockchains and
can store and distribute encrypted data chunks to blockchain members

for which it replicates data.

To coordinate the SDFS Support Network nodes and match micro-

network users with an appropriate Support Network node, SDFS uses a
Smart Contract hosted on a shared blockchain, which is accessible to all

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 18

of the micro-network users and Support Network nodes. This SDFS
Master Smart Contract (SMSC) tracks available nodes, matches a micro-

network with a Support Network node, and acts as the escrow and
arbiter of the relationship to ensure that the micro-network is receiving

the requested service, and that the Support Network node is paid
according to the agreed-upon terms.

Figure	2	-	The	Support	Network	in	use	by	several	Micro-Networks	

To help ensure that Support Network nodes function properly for the

micro-networks they host, all Support Network nodes must stake
TopiaCoin with the SMSC to become an available node. As part of this

staking process, the node will also declare its capacity in terms of the
number of blockchains it can support, as well as the amount of storage it

has available for hosting encrypted. This information is stored inside the
Smart Contract and used to match micro-networks with appropriate

nodes.

In operation, when a dApp using the SDFS library decides to make use of

a Support Network node for high availability, the library will contact the

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 19

SMSC and request a node to host the blockchain. Based on this request,
the SMSC Smart Contract will select an available Support Network Node

and assign it to the new container. This node's info is provided to the
SDFS library which then contacts the node directly to request that it

create a blockchain for the new container. Once the container’s
blockchain is created, initialized, and started, the node returns the RPC

URL of the new blockchain to the SDFS library. The SDFS library
connects to the blockchain, loads the container Smart Contract, and

initializes the container information inside the blockchain.

A dApp may want to use more than one Support Network node for

redundancy and high-availability. The SDFS library will repeat the
process described above, except that instead of asking the assigned

node to create a new blockchain, it will ask the node to attach to an
existing blockchain, providing the address and port of an existing node

that is already running the blockchain. The node will then initialize and
start the blockchain software, instructing it to connect to the existing

node and synchronize the blockchain. Once this is complete, the node
will return the RPC URL of the blockchain node to the SDFS library,

which can then use like any other blockchain node.

For data replication, the SDFS Library again contacts the SMSC, this time
requesting a node that can replicate encrypted content. The request will

include an estimate of how much storage space the container requires.
The SMSC will select a node with enough available storage to support

the expected load of the container.

The SMSC is responsible for assigning nodes to containers when

requested. To ensure the best performance and fairness for all Support
Network nodes, the SMSC assigns nodes to containers based on either

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 20

the total number of containers that are currently being serviced by each
node, or by the available replication space remaining on the node. The

SMSC will select the node with the fewest containers currently assigned,
up to the limit specified by the node on registration/staking.

Technical Details

Technologies and components that make up the SDFS, as well as the

flow of data between the components and participants in a container, are
discussed in this section.

Components

SDFS will be built on top of existing technologies, including Distributed
Hash Tables, peer-to-peer data transfer, and digital ledgers. Examples of

these technologies are discussed below, including how each technology
is used in SDFS.

Kademlia

Kademliaiii is a Distributed Hash Table (DHT) designed for use in
decentralized peer-to-peer networks. SDFS uses Kademlia to

discover information on users, containers, and nodes. Kademlia’s
design ensures efficient lookups in large-scale networks. SDFS

clients can quickly retrieve information from the DHT.

S/Kademlia

S/Kademliaiv (i.e. “Secure Kademlia”) is an adaptation of Kademlia
that attempts to secure the system by defending against its most
common attack vectors. Node forging is repelled using

cryptographic signatures to sign nodes. Taking control of a
dominant percentage of node IDs (known as a Sybil attack) is

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 21

made significantly more difficult by forcing node creators to
perform cryptographic puzzles, which slows the maximum creation

rate of node IDs. An Eclipse attack, in which an adversary that
understands Kademlia’s internal routing structure attempts to take

control of a node and attack communications being routed through
it, is defended by creating a strong sibling consensus network.

This means that a single adversary will be outnumbered by
uncompromised nodes that disagree with it.

µTP

Micro Transport Protocolv, or µTP, is a UDP-based variant of the
BitTorrent peer-to-peer file sharing protocol. It provides low-

priority data transfer between peer-to-peer clients that conserves
bandwidth for other operations. SDFS will use this protocol to

transfer data between nodes. Asset chunks and user information
are transferred via this method.

Blockchain

A blockchain is a growing list of transaction records that are
cryptographically linked. In a decentralized system, a blockchain

creates a secure, non-modifiable transaction record. As nodes in
the decentralized system verify the blocks in a blockchain, the

preceding blocks become more permanent as the effort required
to forge blocks or change previous blocks increases. SDFS will

use blockchains as the basis for the container; it will be the
distributed ledger that represents the container and contains all

actions taken within it.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 22

Data Encryption

SDFS will leverage secure data transfer techniques that Topia
Technology developed for its Secrata Enterprise Platform. These
techniques involve the shredding of digital assets into separate
chunks and the application of multiple encryption layers to ensure

that the chunks are protected and can only be accessed by the
members of a specific container.

Access Control

SDFS will utilize the information in the container blockchain to
enforce data security on that container and the chunks comprising

the digital assets it contains. Access to chunks in a specific
container is restricted to current container members.

Data Flow

The following section describes in greater detail the processes by which
standard Secrata operations are performed. These data flows make use

of blockchain as well as the DHT.

Creating a Container

Creating a new secure SDFS container involves multiple steps,
which vary depending on the mode for which the SDFS library has
been configured. These steps include: creating a blockchain to

host the container; initializing the container; recording the
container metadata; and setting up the creator as a container

member.

The container’s blockchain is created by contacting the SMSC and

requesting a node to host the blockchain. Once a node is
assigned, the library will contact the node and request creation of

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 23

the blockchain. Upon successful creation of the blockchain, the
node will return the blockchain’s RPC URL to the library, which

allows the library to connect to the blockchain and load the
container Smart Contract.

Once the library is connected to the blockchain, it can invoke the
Smart Contract to create the container and set up its metadata.

This will record the existence of the container, set its name and
description, and insure that a unique identifier has been assigned

to it.

Next, the library must insure that the container creator has been

added as a container member. The smart contract adds a record
to the container that contains the creator’s account name, as well

as a copy of the container key, encrypted with the creator's public
key. The container's creator can access the container from any

device or application they choose.

Finally, the library will update the DHT with the list of nodes that

are hosting blockchains and replicating data for this container.
Other member’s applications will use this information to

successfully connect to the blockchain and access the encrypted
data that form the assets stored in the container.

 Adding Members to a Container

New members are added to a container in much the same as the
creator is added. The inviter's dApp asks the SDFS library to add
a new member to the container, optionally specifying a welcome

message to be displayed to the new user. The library will encrypt
the container's key using the invited user’s public key. Then, the

library will call the Smart Contract to create the necessary record

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 24

for the new user, including their account name and their encrypted
container key. Finally, the library will post the invitation

notification, along with the invitation message, to the DHT so that
the invitee receives the new invitation.

The invitee's dApp will be notified by the SDFS library of the new
invitation. The SDFS library then connects to the appropriate

blockchain and retrieves the container information. Once the dApp
or user has decided to accept the invitation, the library will invoke

the Smart Contract to mark the invitation as accepted, allowing it
to retrieve the container information from the Smart Contract and

access the digital assets and messages contained within.

The process for finding a particular user’s account is introduced in

a later section.

Adding Digital Assets to a Container

Digital assets are protected using Topia Technology’s patented
shredding and encryption methodology. This process takes a
digital asset, breaks it up into chunks, and encrypts each chunk

using a unique encryption key. These keys, along with the chunk
metadata (e.g. size, hash, etc.) are then encrypted using the

container key. Finally, the add file method of the smart contract is
invoked to store the metadata of the newly added asset in the

blockchain. The encrypted chunks can then be shared with other
members via peer-to-peer communications as described in the
Data Transfer section below.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 25

Retrieving Digital Assets from a Container

To retrieve a digital asset from a container, that asset’s metadata
must be read out of the blockchain and decrypted using the
container key. This decrypted information (i.e. asset entry) will tell
the client which chunks are needed to reassemble the digital asset.

The client will then check its local storage to see which chunks it
has and which it needs to retrieve. For each chunk the client needs

to fetch, it retrieves it from another container member using the
algorithm described in the Data Transfer section.

Once all of the chunks described in the Asset Entry are locally
available, the client will decrypt them using their respective keys

specified in the Asset Entry, decompress them (if necessary), and
combine the data in cardinal order to recreate the digital asset.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 26

Data Transfer

An asset’s chunks are transferred between nodes via robust,
proven peer-to-peer data transfer protocols, such as µTP. When a
node requires data it doesn’t have, it must determine which nodes

to ask for that data. The first step is

to determine where the required data
might be stored. The library will

query the DHT for the list of all
Support Network nodes associated

with the container. This list is
combined with the list of all the

member-owned nodes to form the
query set.

The basic workflow is that a client will
make an ASK request of each of the

nodes for each chunk it needs to
download. The queried nodes will

respond with a CAN_FULFILL message if they have the requested
data, or a CANNOT_FULFILL if they do not have it. Once a node

responds with a CAN_FULFILL message, the requester will send a
GIVE request to that single node. That node should then respond

with a SEND message containing the requested data.

To ensure the integrity of the data being transferred, and that
unauthorized interlopers cannot gain access to data without

authorization, all of the data transfer messages and responses are
digitally signed by the sender. Recipients will validate the digital

signature before responding to requests or processing
responses. If a message’s digital signature does not validate or is

Figure	3	-	Chunk	data	transfer	protocol.	

	

Member 1 Member 2

ASK (chunkID)

GIVE (chunkID)

CAN_FULFILL (chunkID)

SEND (chunkID, chunkData)

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 27

not from an authorized container user, the message is discarded
and the recipient ignores it.

Micro-Network High Availability Hosting

The SDFS Support Network is composed of highly-available systems that

want to offer their CPU and storage capacity to other SDFS users in
exchange for a fee. These nodes can host a number different micro-
network blockchains as well as storing and distributing encrypted data

chunks to the members of the blockchains it hosts. To incentivize
Support Network nodes to provide reliable micro-network hosting

services, they are paid a fee by the nodes for which they host micro-
networks. To ensure that nodes are trustworthy and will continue to

support the micro-network in question, they must regularly provide a
Proof of Hosting to prove they still host the blockchain in question.

Proof of Hosting

The proof of blockchain hosting works as follows. The library will
periodically post a container verification value into the container

Smart Contract on the blockchain hosted by the node. This
container verification value consists of a random value that is

periodically updated by the client. The library will then create the
solution by hashing the container verification value together with

the transaction ID where the value was set, and the block number
that contains the transaction. The library will then send this

solution value to the for later validation against the Support
Network node’s solution.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 28

Figure	4	-	Proof	of	Hosting	Validation	Process	

The support node will periodically find the latest transaction in
which the verification value has been set. The support node

presents this value to the SMSC, along with the corresponding
block number and transaction ID, as proof of ongoing blockchain

support. Once the value has been validated by the SMSC,
periodic payment to the node will be made. To prevent over

burdening the SMSC, nodes are limited to invoking this method at
a certain maximum rate (e.g. every 2 hours). If the client isn’t

online to update the container verification value, the hosting node
can continue to provide proof of verification and get paid for

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 29

hosting services. Once the client comes back online, the
verification value will update.

Digital Asset Replication

In SDFS, there is no central server serving as the repository for digital

assets shared within a container. This means that the container members
must share the digital assets to ensure that each member can access
them when required. Since the asset data is shredded and encrypted, it

is possible to distribute the parts of an asset to multiple nodes
participating in the container. In this way, all of the members will store

some of the asset data. Any data not currently stored locally can be
readily obtained from the other container members.

High Availability

Containers can attain high availability status by using multiple
Support Network nodes. These nodes would each be asked to

host the container’s blockchain and will work together to process
transactions and maintain the blockchain. In addition, the

container can use the nodes to provide redundant replication of
data chunks, ensuring that other member nodes can access the

necessary chunks to reassemble a digital asset even when the
user who uploaded the asset isn’t online.

Proof of Replication

To facilitate payment for data replication, SDFS will use a Proof of
Replication process. This process will allow a replicator to prove

that it still has the data it has agreed to replicate. Presentation of
these proofs will allow the replicator to receive payment for data

they have replicated.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 30

Only the client that replicated the data to the node can trigger
proof of data replication. Proof of data replication involves the

client presenting the node with a replication challenge and giving
the SMSC the solution to that challenge. The node must then

present the SMSC with the correct solution to the challenge to
receive payment for data replication.

Specifically, the client will generate a cryptographic hash from a
portion of one or more of the chunks that it has replicated to the

node along with the total amount of data replicated by the node
and a nonce value. The client sends this hash to the SMSC before

sending the challenge to the node. The challenge consists of
details on what portions of the chunks must be hashed to generate

the correct hash value along with the nonce that will be combined
with them. The node will calculate the hash value of the chunk

regions and present this hash, along with the total amount of data
it is replicating and the nonce, to the SMSC. The SMSC will then

validate that these values correspond to the hash value submitted
by the client. If the values match, the node will be paid for the data

replication based on the reported amount of data being replicated.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 31

Figure	5	-	Proof	of	Replication	Process	

This process is repeated for each client/node replication pair. If a

client is using multiple nodes to replicate chunks, then it must
produce a challenge and solution for each node. If multiple clients

in a container are replicating data on a particular node, each client
must separately produce a challenge and solution for that node for

the data they have asked the node to replicate. If multiple clients
have asked a node to replicate the same data, each client will pay

for data replication, as if they were the only one who had asked.
This ensures that the data continues to be replicated even if others

later decide they no longer want to replicate that data on the node.

This proof of replication technique makes it possible for the client

and the node to agree on the amount of data being replicated; as
well, the node can prove that it is still replicating the data in

question, without the client revealing information to the SMSC that
would enable the node to cheat the proof process. Since the

SMSC does not contain the amount of data replicated, or the

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 32

information on which chunk regions are involved in the hash, the
node cannot use information stored in the SMSC to generate the

solution without having the actual data available.

In some cases, the client may be unavailable to initiate a data

replication proof. In these cases, the node can periodically present
the SMSC with the solution to the data replication proof again.

Assuming the proof solution in the SMSC hasn't changed, the
SMSC will again validate the solution and pay the node for

replicating the data for the intervening time period.

Table	1	-	Proof	of	Replication	Message	Contents	

Challenge: [
 Chunk portion list,
 replication id,
 nonce
]

Solution: Hash(Hash(Chunk Portions, replication id, nonce), Total
data replicated by node)

Node Solution
to SMSC:

[
 Hash(Chunk Portions, replication id, nonce),
 Total data replicated by node
]

To avoid excessive processing, the SMSC will only allow proof of
replication solutions to be presented by the node at a specific

interval (e.g. once every 24 hours). This interval allows time for the
client to provide an updated proof of replication challenge and

solution to the node and SMSC before further payment is issued.

If the SMSC rejects a solution provided by the node, the node can

cease replicating the data for the client, and notify the SMSC of
this decision, or wait until the next challenge is issued to

reestablish the necessary proof. The client, likewise, can

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 33

summarily terminate the replication agreement with the node by: 1.
instructing the node to remove all replicated data, and 2.

submitting a solution to the SMSC that indicates that no data is
being replicated. The node can then only succeed by proving it

doesn't have any data, and thus isn't owed payment.

To ensure that replicating nodes are always paid, anytime a client

sends new data to a node for replication, it must initiate a
replication challenge with the new data. If a client does not initiate

the replication challenge after sending the data to the node, the
node can delete the newly replicated data and notify the SMSC of

the client’s failure.

User Account Resolution

Adding a member to a container will require converting a common user

identifier (e.g. an email address) into a blockchain wallet ID or account
name. For users that the application hasn’t encountered before, two

different approaches to this issue are available: querying existing systems
for information; and engaging an email loop to resolve an address to a

wallet ID.

Querying Existing Systems

By querying existing systems, the application developer can take
advantage of the existing infrastructure investment and quickly
resolve user identifiers to their associated wallet IDs or account

names. To make the process less onerous for developers, SDFS
will provide a standardized mechanism for querying existing

systems, such as Active Directory. This standardized mechanism
involves the installation of an SDFS gateway application that

receives queries from SDFS-based applications and, in turn,

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 34

queries the existing system for the corresponding wallet ID. This
system can be expanded to any service or organization that wants

to provide name-to-wallet resolution services.

It is understood that such a system may lead to a central point of

failure. The decision to use such a system is left to the dApp
developer.

Email Loop Resolution

In applications that prefer not to use existing, possibly centralized,
systems, an email loop approach can be taken. The SDFS-based

libraries will generate and send an email that contains a specially
constructed URL to the user being invited via the existing email

infrastructure.

Once the email is received, invitees can click on the link to access

the decentralized application and forward their wallet ID to the
inviter. When the application launches, it will ask the user to either

login or create a new wallet. Once the user has successfully
logged in to their wallet, the wallet ID will be sent back to the

inviter using the SDFS’s DHT network.

The inviter’s application will see the information on the DHT and be

able to complete the invite process and notify the invitee of the
new container.

This process can be generalized for communication mechanisms
other than email. Similar instructions and links could be sent via
social media networks or cellular text messages. In each case, the

link would cause the SDFS application to launch and complete the
process described above.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 35

Attacks

The use of blockchains to manage containers in SDFS highlights several

possible vectors by which an attacker may attempt to intercept, subvert,
and deny access to data. This section discusses several possible

avenues of attack and how to mitigate risks associated with each attack
vector.

Data Acquisition Attacks

The attacks listed here relate to attempts by an attacker to gain
unauthorized access to data in a container.

Intercepting the Blockchain

An attacker interested in exfiltrating information from a container
might attempt to intercept the blockchain and extract the

contained information to steal digital assets and other sensitive
information. However, SDFS operates by encrypting nearly all of

the container state information in the blockchain using a container
key. This key is present in the blockchain in an encrypted form

that is only recoverable by the individual container
members. Thus, acquiring the blockchain would not allow an

attacker to access the digital assets contained in the container, or
the messages exchanged between the members. Only the

container’s name and its members’ IDs can be extracted from the
blockchain without a member’s private key.

Acquiring Digital Asset Chunks

An attacker may attempt to acquire asset data by directly
requesting chunks from container members or support nodes. An

attack like this requires the attacker to know or obtain the

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 36

following: the IDs of the chunks they want to obtain and the
unique chunk encryption key. The IDs and encryption keys are only

available to container members in encrypted form and can only be
decrypted using the container key. The container key is protected

in the blockchain using public key cryptography. Therefore, to
access the IDs and encryption keys, the attacker must either

compromise a member’s account and obtain their private key or
use brute force to obtain their private key. In addition, all container

members validate data transfer requests to ensure that a valid
member has signed the request. Again, an attacker must obtain a

member’s private key to convince the system to transfer a chunk.

Denial of Service Attacks

The attacks listed below may attempt to prevent authorized container

members from gaining access to the digital assets shared in the
container.

Corrupting the Blockchain

An attacker may attempt to deny authorized members access to a
container by corrupting the blockchain. To corrupt individual

copies of the blockchain would require the attacker to: obtain a
copy of the blockchain; corrupt the data contained within the

blockchain; and send it to the container members and support
nodes. To obtain the blockchain, the attacker must either

convince a member system or support node to send a copy of the
blockchain or obtain a copy out of band. Once a copy of the

blockchain is obtained, the attacker could corrupt it either by
destroying blocks within it or by attempting to rewrite or insert

transactions into the chain. Either attempt would be thwarted by
the blockchain’s inherent validation checking whereby members

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 37

detect invalid blocks in the blockchain and reject the
chain. Likewise, rewriting or inserting fraudulent transactions

would be caught either by: a failed digital signature; by detecting
that a transaction was signed by a nonmember; or by the Smart

Contract detecting that the transaction is not legal in the container.

Denying Chunk Access

An attacker may attempt to deny authorized access to a
container’s content by preventing members’ systems from
acquiring chunks from other members or support nodes. The

attacker would have to convince a member’s system that no other
container members’ systems or support nodes were available to

obtain the chunks. The attacker would place itself in a strategic
network position like at a routing point and would then drop all the

packets that request data from the other members. This attack
can only work when the attacker is between the victim and all

other container members. If the victim can reach a container
member by another route, they will be able to bypass the attacker

and retrieve data via that pathway.

Providing Corrupt Chunk or Blockchain Update Data

An attacker may attempt to deny authorized users access to a
container by distributing corrupt chunks or blockchain
updates. To accomplish this, the attacker must convince a

member’s system that it is a legitimate source for blockchain
updates and chunk data. The member system could detect

corrupted blocks by comparing the cryptographic hash of the
chunk against the hash stored in the asset’s metadata entry in the
blockchain. Chunks without a matching hash would be discarded

and acquired from a different member. Likewise, invalid

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 38

blockchain updates would be detected by a failed digital signature
on the block, or by noting the block was signed by a public key

that isn’t a member of the container.

Future Research

SDFS is an evolving technology designed to interoperate with other
systems and technology. New blockchain and peer-to-peer technologies

are being developed that complement SDFS’ capabilities. As they arise,
Topia will investigate them for application and usefulness within SDFS.

This section highlights several technologies and systems that improve
SDFS capabilities.

StorJ/FileCoin

StorJvi and FileCoinvii are peer-to-peer cloud storage networks that allow
files to be stored without relying on traditional 3rd-party storage providers.

In certain situations, a developer might use StorJ in conjunction with
SDFS as the mechanism for storing encrypted chunks. The security,

integrity, and availability of data stored in these systems must be
investigated.

Keybase

Keybaseviii provides a public directory of individuals, including their public
keys. An SDFS-based application could use such a system to look up

users before inviting them to a container.

Blockstack

Blockstackix is a new network for decentralized applications. It aims to

address the centralization of the Internet at the application-layer.
Specifically, Blockstack has created an alternate DNS system, an

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 39

alternate public-key infrastructure, and a distributed data storage system.
Each of these systems is advantageous when developing decentralized

applications on SDFS. Topia will continue to monitor the development of
Blockstack and identify potential synergies between the two networks.

Microsoft Azure Coco

Cocox is an open-source system that enables high-scale, confidential
blockchain networks that meet all key enterprise requirements. As the

project matures and becomes generally available, Topia will continue to
investigate its application for enterprises that want to leverage the SDFS

technology.

IPFS

IPFSxi is a peer-to-peer distributed file system that seeks to create a
global file system accessible by all computing devices. As it grows and
matures, Topia will continue to evaluate IPFS’s usefulness as an

alternative chunk storage mechanism. Since IPFS is a globally shared file
system, the security, integrity, and availability of data stored in it must be

investigated to ensure SDFS maintains its high levels of security.

Trust

Trust in a decentralized system is an open area of research. In a system

with no centralized authority, it is challenging to establish trust between
entities. This is especially true when attempting to establish trust with an

unknown entity. SDFS requires trust between container members. How
this trust is established and verified is an area of continuing research.

Topia will continue to investigate trust establishment mechanisms and to
determine how those trust relationships might affect the actions that can

be taken by container members.

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 40

About Topia Technology

Topia Technology was founded in 1999 and spent a decade securely

moving and managing data in complex distributed environments for
programs with the US Army, the Federal Aviation Administration, the US

Air Force and the Transportation Security Administration. Each of these
customers required security complemented by strong performance

metrics – these challenges were met by Topia’s innovative solutions and
seasoned engineering teams. With this experience in high security, high

performance environments, Topia developed its battle-tested security
platform, Secrata, to provide unmatched security, flexibility, extensibility

and performance.

Secrata is a patented technology that shreds and encrypts data end-to-

end to harden security for cloud, Big Data and mobile environments. It is
the only triple layer enterprise security platform providing encryption and

separation end-to-end and protecting against both brute force attacks
and more innovative security threats. Secrata ensures a new level of
security, privacy and compliance for data regardless of where it is stored

or how it is accessed.

i Secrata Security.

 https://secrata.com/file-sync-share/security/.
ii Bitcoin.Info. Blockchain Size.

https://www.blockchain.com/charts/blocks-size
iii P. Maymounkov, D Mazières. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric.
https://pdos.csail.mit.edu/~petar/papers/maymounkov-

kademlia-lncs.pdf.

																																																								

Secure Decentralized File Sharing (SDFS) Network White Paper v9.0

 41

	
iv Ingmar Baumgart, Sebastian Mies. S/Kademlia: A Practicable Approach
Towards Secure Key-Based Routing (2007).
http://www.spovnet.de/files/publications/SKademlia2007

.pdf.
v A. Norberg. uTorrent transport protocol.
http://bittorrent.org/beps/bep_0029.html.
vi S. Wilkinson et al. Storj A Peer-to-Peer Cloud Storage Network (2016).
https://storj.io/storj.pdf.
vii Protocol Labs. Filecoin: A Decentralized Storage Network (2017).
https://filecoin.io/filecoin.pdf.
viii Keybase Inc. Keybase. https://keybase.io.
ix Blockstack PBC. Blockstack: A New Internet for Decentralized
Applications
https://blockstack.org/whitepaper.pdf
x M. Russonivich. Announcing the Coco Framework for enterprise
blockchain networks. https://azure.microsoft.com/en-
us/blog/announcing-microsoft-s-coco-framework-for-

enterprise-blockchain-networks/.
xi J. Benet. IPFS - Content Addressed, Versioned, P2P File System
(DRAFT 3) (2014).
https://github.com/ipfs/ipfs/blob/master/papers/ipfs-

cap2pfs/ipfs-p2p-file-system.pdf.

