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Abstract. This whitepaper addresses existing problems with conven-
tional non-machine readable contracts. Such conventional contracts (CC)
are complicated to set up, disconnected from ICT-systems and when con-
flicts occur, tracking their execution is restrictively slow and in addition,
CCs are challenging to enforce. On the other hand, so called self-aware
contracts (SAC) that are similar to CCs with respect to legal enforce-
ability, are machine readable and supportable by blockchain-technology.
SACs do not require qualitative trust between contracting parties be-
cause blockchains establish instead a quantitative notion of trust as
SAC-related events are immutably stored. However, currently existing
machine-readable contract solutions, i.e., smart contracts, lack suitable
obligation constructs for execution and enforcement. Additionally, cur-
rent systems do not comprehend the dynamics of legal relationships. It
is important to mask legal obligations with daily human conduct. This
whitepaper address the gap by specifying a so-called Agrello-framework
that enables blockchain-driven self-aware agents-assisted contracts for a
decentralized peer-to-peer (P2P) economy.

Key words: self aware, multi agent, blockchain, smart contract, decen-
tralized, per-to-peer, e-governance, human readable

1 Introduction

The traditional understanding of a conventional contract (CC) is an exchange
of commitments by identified parties that are enforceable by law. An important
prerequisite for a contract that most commonly exists as a written document as
evidence, is that the parties involved voluntarily engage to establish a consensus
[19]. In most business cases, CCs are documents [44] that identify the contracting
parties uniquely and state explicitly the commitments of the latter. When those
commitments are performed, their status changes over time. Another problem
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with the traditional form of setting up and managing CCs is that they are
often underspecified and the ability to manually track their status is restricted.
As there is no concrete overview of the CC-status, the contractual relationship
between parties is prone to conflict. The resulting costly conflict resolutions may
even collapse an entire contractual relationship. Also the enforcement of CCs [29]
proves to be either too complicated, time consuming, or impossible, certainly in
international circumstances.

The authors in [20] recognize that shared blockchain technology enables busi-
ness collaborations that require high-reliability and shared, trusted, privacy-
preserving, immutable data repositories for smart contracts. So-called business
artifacts for adopting data-aware processes provide a basis on shared blockchains
that enable business-collaboration languages such a Solidity [25] of Ethereum.
In [52], the authors map a running case of a collaborative process onto a smart-
contract scripting language. That approach addresses the trust-issue in collabo-
rative processes in that no single third-party entity must monitor events. Instead,
the blockchain enables trustless process collaboration because of no single entity
being in control. The mapping from collaborative processes to blockchains en-
ables the monitoring of process enactment and an auditing of related events. In
[21], different smart-contract language choices are compared. While procedural
languages are currently the norm[25], also logic-based languages are alternatives.

The state of the art above shows that partial smart-contract approaches exist
for blockchain technology. However, there is a lack of a framework moving smart-
towards self-aware contracts (SAC) where the latter have the ability to gather
information about their internal and external-contextual state and progress to
reason about their behavior while being an artifact of law. Furthermore, the
state of the art above also does not recognize that such SACs must cater for
having humans in the contract loop. This paper fills the gap by posing the
question how to make self-aware human-readable contracts legally viable? To
reduce complexity and establish a separation of concerns, we deduce three further
sub-questions as follows. What enables contracts to be self aware? What enables
SACs to be human manageable? What ensures contract immutability for legal
viability?

The remainder of this whitepaper is structured as follows. Section 2 presents
a running case for SAC management along with related literature that pre-
pares for subsequent sections. Section 3 focuses on the important relationship
in SACs between essential content and the mapping to business processes that
require monitoring. Section 4 discusses the meaningful integration of humans in
the SAC lifecycle. Section 5 explores which pre-existing blockchain-technology
solutions can be combined in a suitable way for achieving a trustable manage-
ment of contract elements. Section 6 evaluates the results against the running
case, employing a proof-of-concept prototype. Finally, Section 7 concludes the
whitepaper and also comprises plans for future work.
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2 Background Literature and Running Case

In section 2.1 we present related literature that prepares the reader for subse-
quent sections. Section 2.2 contains a running contract case that stems from
real-life apartment-renting contracts. Note that we use the terms beneficiary for
creditor and obligor for debtor.

2.1 Related Work

Scholarly literature about SACs exists. In [2], the core elements of legislation are
addressed, including duties and obligations that share intersecting properties.
The characteristic of a duty is the absence of a benefiting party (beneficiary),
while the performance of an obligation serves a beneficial result for a determined
beneficiary. The focus of the whitepaper is on obligations the properties of which
Figure 1 informally depicts.

Fig. 1. Informal properties of an obligation.

The properties in Figure 1 show a micro-process for obligations development
using the business-process modeling notation BPMN [28]. The small green-lined
circle denotes the start of the process and the red-lined circle the end. Rectangles
in Figure 1 are tasks and x-labeled diamonds denote an exclusive-choice split
and -join respectively. Directed arcs connect the nodes along a control flow from
start to end. Figure 1 shows that obligations exist to either do something or to
refrain from something. Further details about these so-called smart obligations
are presented in Section 3.

Fig. 2. Right-development micro-lifecycle.
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In contract law, rights and obligations are related so that if one party to
the contract decides to use his right, there is a corresponding obligation on the
other party. Rights that stem from the contract are reflected in obligations of
the other party. Figure 2 depicts a micro-lifecycle of rights specifications. After
determining the beneficiary of a right, there can either be a right to claim, or a
right to do something that pertains to an action type and object. Finally, the
obligors must be determined who enable a right. For example, the lessee has a
payment obligation in a rental contract. In case of a late payment, the lessor has
the right to claim late-payment charges. After invoking that right, the lessee has
an obligation to pay.

Orchestration and choreography protocols that facilitate, verify and enact
agreements between consenting parties are termed smart contracts [23, 40, 45].
The latter initially find application in diverse domains such as financial tech-
nology [10], Internet-of-Things (IoT) applications [42] and digital-signing solu-
tions [14]. An essential aspect of smart contracts is a decentralized validation of
transactions, initially by means of so-called proof-of-work (PoW) [51]. The core
technology that enables smart contracts is a public distributed ledger termed
the blockchain that records transaction events without requiring a trusted cen-
tral authority. Blockchain technology spreads in popularity with the inception
of Bitcoin [31], a peer-to-peer (P2P) cryptocurrency and payment system that
comprises a limited set of operations on the protocol layer. Bitcoins use PoW
for transaction validation that is computationally expensive and electricity in-
tensive.

Most proof-of-stake (PoS) blockchains can source their heritage back to Peer-
Coin1 that is based on an earlier version of Bitcoin Core. There are different PoW
algorithms such as Scrypt2, X113, Groestl4, Equihash [6], etc. The purpose of
launching a new algorithm is to prevent the accumulation of computing power
by one entity and ensure that Application Specific Integrated Circuits (ASIC)
can not be introduced into the economy.

There are ongoing discussions about consensus and which platform meets
the needs of respective project requirements. The consensus topics most widely
discussed are: PoW [50], PoS [5], Dynamic PoS5, and Byzantine Fault Tolerance
[12] as discussed by HyperLedger. The nature of consensus is about achieving
data consistency with distributed algorithms. Available options are, e.g., the
Fischer Lynch and Paterson theorem [7] that states consensus cannot be reached
without 100% agreement amongst nodes.

In the UTXO model, transactions use as input unspent Bitcoins that are
destroyed and as transaction outputs, new UTXOs are created. Unspent trans-
action outputs are created as change and returned to the spender [1]. In this way,
a certain volume of Bitcoins is transferred among different private key owners

1 https://peercoin.net/
2 https://litecoin.info/Scrypt
3 http://cryptorials.io/glossary/x11/
4 http://www.groestlcoin.org/about-groestlcoin/
5 http://tinyurl.com/zxgayfr



Self-Aware Contracts 5

and new UTXOs are spent and created in the transaction chain. The UTXO of a
Bitcoin transaction is unlocked by the private key that is used to sign a modified
version of a transaction. In the Bitcoin network, miners generate Bitcoins with a
process called a coinbase transaction, which does not contain any inputs. Bitcoin
uses a scripting language for transactions with a limited set of operations6. In
the Bitcoin network, the scripting system processes data by stacks (Main Stack
and Alt Stack), which is an abstract data type following the LIFO principle of
Last-In, First-Out.

In [39], the authors define an ontology that allows for a rapid validation of
the concepts and properties existing contracting languages comprise7. A state-
of-the-art formalization means of ontologies is to use the web ontology language
OWL [27]. The latter organizes class hierarchies and allows practitioners to find
a common semantical understanding about a problem domain. Note that ontolo-
gies represent constantly evolving information on the Internet originating from
heterogeneous data sources.

The obligation ontology for this paper we design with the Protégé tool [30]
that is a free, open source ontology editor for systematic knowledge acquisition.
Protégé comprises a graphic user interface with plugins for varying ontology visu-
alizations and correctness checks. We employ the HermiT reasoner [18] to check
the ontology consistency, identify subsumption relationships between classes, and
so on.

Since the obligation ontology is static, we employ Coloured Petri Nets (CPN)
[22] as a graphical oriented language for covering the dynamic aspects of obli-
gation processing using CPNTools8. Informally, the CPN-notation comprises
states, denoted as circles, transitions, denoted as rectangles, arcs that connect
states and transitions but never states with other states or transitions with other
transitions, and tokens with color, i.e., attributes with values. Arcs carry inscrip-
tions in CPN-ML expressions that evaluate to a multiset or a single element.
Modules in CPN are non-atomic place-holder nodes for hierarchic refinements
that correspond to respective services in a system-implementation.

The holistic lifecycle management of SACs is relevant and has been ignored
so far by industry practitioners. Consequently, in [34], the startup phase com-
mences with choosing from a library a contract template where the latter is
configured with service types and roles. Concrete service offers from tentative
eCommunity partners populate the service offers and roles before a negotiation
phase either results in a terminating dissent of only one party, or a counteroffer
that requires a restart of the negotiation, or a consent that establishes a con-
tract. The next phase of the lifecycle [35] involves creating local contract copies
for each eCommunity partner. The local contract copies are the means for de-
ducing respective sets of business policies, network monitors, monitoring agents
and communication endpoints of concrete technical services for the enactment
phase. The latter [41] is carried out in a distributed way and when a violation

6 https://en.bitcoin.it/wiki/Script
7 https://steemit.com/smart/@alexbafana/smart-contract-languages-comparison
8 http://cpntools.org/
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of a business policy occurs, the non-violating eCommunity parties must vote on
the perceived severity. The outcome options are either calming for the ongo-
ing contract enactment, or disruptive. The former maintain the enactment and
comprises voting outcomes, such as ignoring a violation, or replacements of a
business rules, service offers, an eCommunity party with a new one, and so on.
Calming reactions require to varying degrees a destruction of flowing business
semantics for rolling back the remaining subset to earlier contract-lifecycle stages
in a targeted way. A disruptive voting outcome leads to a sudden termination of
an ongoing enactment as the business-rule violation is perceived as too severe.
The rollback results in a new negotiation for starting another contract, unless
the business case seizes to exist.

The potential conflicts that occur between decentralized autonomous agents
(DAO), require specific modeling, management and resolution [32]. The manage-
ment works as such that first, a conflict is detected by analyzing the exceptions
reported during execution. Second,the conflict type, origin and impact of an ex-
ception must be uncovered. Finally, depending on the nature of an exception, the
appropriate conflict negotiation and resolution strategy among the participat-
ing entities is implemented. An ontology enables modeling conflict types along
with related exceptions, negotiation and resolution strategies, thereby enabling
conflict management and resolution.

Ongoing contract enactments may also evolve [16] in an orderly way. In that
case, the assumption is that a collaborating party modifies an internal technical
process that matches with an externally exposed service offer. The latter is a
subset of the internal process so that business secrets remain private. Based on
a set of rules, such internal process changes may trigger varying changes of a
process view that may cross over into the domain of collaborating parties to the
degree of affecting other eCommunity-party internal processes. The objective is
to assure that a collaboration configuration remains sound in that the enactment
of a contract reaches the desired terminal state.

Finally, there is a clear need to bring different solutions from different technol-
ogy and application domains together for a holistic design of cyberpysical systems
(CPS) [43]. CPS integrates computational and physical capabilities that allow
for interaction with humans through diverse means [3]. Such novel interaction
ways expand the capabilities of humans in correlation with the physical world
through computation, communication, and control as a key attraction feature of
CPS. For example, in domains in the design and development of next-generation
avionics and vehicles, smart cities, Industry 4.0, and so on. The flexible and
scalable governance of CPS raises the need for employing SACs where smart
contracts are combined with smart objects such as Belief-Desire-Intention (BDI)
agents [8].

Jason9 is a platform for the development of BDI-agent systems that incorpo-
rates a reasoning cycle for interpreting and executing source code in the agent-
oriented programming language AgentSpeak. The latter stems from logics pro-
gramming and allows for knowledge presentation in mathematical relations.

9 http://jason.sourceforge.net/wp/
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2.2 Running case

A user story depicted in Figure 3 describes a process of making a rental agree-
ment based on activities of a lessor and a lessee. Lessor is a person who is a
property owner or a person who represents a property owner and has a right
to make a rental agreement on behalf of an owner. We call him John. Property
in this use case scenario is what in legal terms is called an immovable, i.e., a
plot of land and anything permanently attached to the plot of land, such as a
house, an apartment, a condo or some other type of premises such as a garage,
a parking lot, a shed, i.e., it is a space that can be rented out. Property can also
be movable in legal terms such as, e.g., a trailer, or a tool. Lessee is a person
who is looking for property to rent for a long or a short period of time. We call
her Mary.

(a) contract initiation (b) contract expiry & termination

timeline

Mary
John MaryJohn

deposit

deposit

act 2

act 1

rent

Fig. 3. The informal exchange protocol for (a) the contract initiation and (b) for
contract expiry and -termination. For (a), the lessee pays a deposit to the lessor and
next both sign a rent contract (act 1). The apartment keys are handed over to the
lessee for moving into the apartment, for which the lessee pays monthly rent. For (b),
a possession-retrieval act (act 2) is signed that may state the apartment is in the same
condition as for (a), the apartment keys are handed back to the lessor, the lessee moves
out and finally, the lessor pays back the deposit.

The lifecycle of a rental contract is divided into the following stages/phases:
a) preparatory, b) negotiations, c) contract execution e) rollback and e) a con-
tract expiry stage. Following Figure 3, the preparation phase of a rental contract
is triggered upon a request from Mary who is looking, for example, for a suitable
apartment for the period of 12 months. At this stage, certain standard require-
ments of the contract have to be determined before John and Mary can proceed
to negotiate terms of the contract. Mary needs information about the owner of
the property and the apartment as John needs information about Mary. John’s
and Mary’s names, personal identification codes, addresses (data of the parties)
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must be included in the contract. The apartment has to be specified so that
its condition and status becomes colloquially apparent and formally defined for
John and Mary. The object of the contract is defined by characteristics of the
apartment such as location (address), size (square meters), intended purpose,
e.g., for living, storing, work and for instance whether a parking space or a
storage room outside this apartment is included.

Traditionally, Mary looks for information about apartments for rent from the
Internet, or she employs a real estate agent to negotiate terms of the contract
with John. This means she must spend time to look for information, make calls
and visits to find a suitable apartment to rent. A real estate agent would charge
a fee for his services.

The Agrello system provides an innovative approach. During the negotiation
phase, John has predefined essential terms of the contract (characteristics of the
rental object, time, price and rating of the lessee) and based on this information
he looks for the best match of a rental request. In the Agrello system, contract
conclusion between John and Mary is possible when a match occurs. If Mary
declines the offer, she indicates which factors she does consent with. Based on
this information John modifies the search criteria for a better match with the
modified requirements. The conclusion of the contract means that both parties
to the contract have expressed their will to conclude it, i.e., all parties have
signed it. This cannot be altered by any third party.

The contract execution phase begins with the documentation of the condi-
tion of the apartment. Traditionally, this refers to a possession transfer act that
includes information about the condition of the apartment, the recorded state of
utilities (water, electricity, heating) and the number of keys given to the lessee.
John must hand over the keys and Mary must pay the deposit for the apart-
ment. After that, Mary is obliged to pay the monthly rent on time and to keep
the apartment in a good condition. If Mary fails to perform her monthly rent
payment then John has the right to claim a late payment charge. A rollback
situation occurs if, e.g., John can not provide the apartment any more, then
John must return the rent that Mary has payed up front.

The contract terminates if the expiry date of the contract arrives, or if the
contract is prematurely terminated. Consequently, the apartment is transferred
back to John. During the contract expiry phase, John expects that the condition
of the apartment is the same upon return as at the point of initial transferral to
Mary. The property-transfer procedure is similar to the description above and
the status of utilities must be recorded.

3 Self-Awareness of Contracts

The current smart-contract lingua franca is Solidity. It embodies a programming
language that industry practitioners without IT-skills do not comprehend, e.g.
lawyers. Therefore, it is not possible to defend such contracts in front of an
independent arbitrator due to a lack of suitability, utility and expressiveness in
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a legal context. For example, Solidity does not comprise language constructs that
resemble obligations and rights pertaining to the parties of a contract.

The purpose of CCs is to establish relationships and to govern the behavior
of contracting people, which requires sound constructs of obligations and rights.
With the emergence of CPS, smart contracts require the capability of reasoning
about rights and obligations, which the involvement of BDI-agents enables. Thus
we yield thereby SACs with scalable socio-technical application scenarios where
humans use technology for solving problems collaboratively. In CCs, a lawyer has
to look at a contract to check if a deadline was missed, or an obligation breached.
Self-awareness in this sense means that both entities, the CC and lawyer, merge
into one artifact being a software agent that comprises contract logics in the
form of machine-readable obligations. More precisely, the agent can deduce, e.g.,
missed deadlines from the obligations, and since we perceive the agent with the
obligations as a smart contract, we conclude a smart contract reasons about
itself.

The remainder is structured as follows. Section 3.1 discusses the ontological
concepts and properties of contractual obligations. Section 3.2 shows in a formal
way the processing of obligations by agents. Next, Section 3.3 explains the use
of BDI-agents in managing the contracts.

3.1 Contract Content

A SAC must comprise important elements of contracts to provide metadata
during the contract execution. This metadata can then be used in various ways
by informatics systems, but most importantly agents, which assist, automate and
manage contract execution. As mentioned above, rights and obligations must
be optimized for machine readability. We explain rights and obligations with
the running case of Section 2.2. Next, we show machine-readability for rights
and obligations while maintaining the capability for non-technical persons to
comprehend the smart rights and obligations based SAC.

Figure 4 depicts the class diagram of the Agrello-framework ontology10. Sev-
eral sub-class relationships exist to capture all essential contractual elements. For
example, we refine an obligation by adding as subclasses Monetary Obligation
and NonMonetary Obligation to express certain remedies are only available for
non-monetary obligations that can be a repair, or a replacement, while some are
monetary, e.g., late-payment charges. There exist also person subclasses such
as an Obligor who must perform an obligation, a Beneficiary who is benefiting
from the performance of an obligation and optionally, a Third Party as a bene-
ficiary from the performance of an obligation, e.g., a utilities provider in a rental
contract.

The purpose of the Remedy subclasses in Figure 4 is to eliminate negative
consequences that result from a breach of the contract. Additionally, by invoking
remedies, a beneficiary achieves a situation if the obligation had been performed

10 Agrello-OWL: http://tinyurl.com/lkkapvg
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Fig. 4. Agrello-ontology class diagram.

correctly. For example, if the rental payment is delayed, the lessor can claim
late-payment Interest.

The Right subclasses are important as they reflect what a Beneficiary can
claim. For example, if a lessee destroys furniture in an apartment, the lessor has
the right to Claim Repair, or Claim Replacement. Finally, the State subclasses
in Figure 4 reflect the status of an Obligation performance in a contract lifecycle.

Fig. 5. Obligation-ontology graph.

With respect to class-references, we focus on obligations and rights. In Figure
5 the depicted graph shows the main ontological relationships for the Obligation
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class. In accordance with Figure 1, the depiction shows components that are
integrated with the ontology. More concretely, Figure 5 comprises an Obligor,
Beneficiary, Precondition, Action and a Deadline. Furthermore, a Remedy is
based on an Obligation and a Third Party fulfills an Obligation. A Claim, or
a Right may create and Obligation and finally, the latter follows lifecycle State
stages.

In Figure 5, a Precondition is an expression that must be fulfilled in order
for an Obligation to be enabled. An Action is the task an obliger must carry
out for the Beneficiary, e.g. pay the rent. An Action has two properties, namely
Action Type such as pay and the Action Object such as rent. The Deadline
states when an Obligation has to be performed.

Fig. 6. Right-ontology graph.

The next ontology graph of Figure 6 shows the static relationship of classes
related to Right. Related to Figure 2, the difference is that a Beneficiary has
Rights prescribed in a contract and a right to several Remedy instances if a
contract is breached. For example if the apartment is not returned by the lessee
in the condition it was in at the beginning of the contract, the lessor has the right
to claim repair, or replacement. Damages can always be claimed, irrespective of
the aforementioned rights. This can be the case if the lessor can not fulfill an
agreement with a subsequent lessee due to delays caused by necessary repairs.

3.2 Obligation Processing

During a contract lifecycle, obligations move through stages of processing. Ac-
cording to the ontology classes of Figure 4, those stages are inactive, active, per-
formed, delayed, defective and terminated. Additionally, there exist the stages
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revised and unfulfillable, which is out of focus for the automation of obligation
processing. More precisely, we discuss the respective stages below:

– inactive: When an agent has not taken an obligation into consideration, i.e.,
the precondition of an obligation has not been met.

– active: An agent takes an obligation into consideration, i.e., the precondition
of an obligation is met. That infers an obligor has to perform the related action
before the deadline passes.

– performed: The action has been carried out by the obligor.
– delayed: The obligor has not carried out the action before the agreed deadline.

Delayed state presumes that the amount of the action object in the obligation
is not delivered to the beneficiary, or is not delivered in the sufficient amount.

– defective: The action object of an obligation is defective.
– terminated: The obligation can be terminated by a fundamental breach, or by

mutual agreement. No further consideration of the obligation will take place.

Following the CPN model in Figure 7, when an obligation is in the stages
delayed, or defective, a contractual agent starts reasoning about breaches to
notify a collaborating party about the rights to remedy breaches, or other options
for conflict resolution. In the delayed stage, the action object of the obligation
is not delivered before the deadline passes, or is not delivered in the sufficient
amount. For example the rent is not paid, or is paid less than required.

A defective distinction in Figure 7 shows monetary and non-monetary obli-
gations. A monetary obligation includes a monetary action, while non-monetary
obligation includes an action with a non-monetary action object. For exam-
ple, the obligation to pay rent is a monetary obligation and the obligation to
transfer the possession of an apartment is a non-monetary obligation. Only a
non-monetary obligation can enter into a defective obligation stage. The latter
requires the action object to lack the expected quality compared to agreement.
For example when the lessee returns the possession of the apartment to the
lessor without the apartment being in the agreed condition. In contrary to that,
an obligation to pay rent cannot have qualitative deficiencies, because rent as
the action object of the obligation has only quantitative features and does not
have any qualitative ones. Although being in the state performed, the obligation
can go to the state defective if defects are discovered in the aftermath.

The obligation stages delayed and defective in Figure 7 initiate rights to the
beneficiary of an obligation to claim remedies. The delayed stage can initiate
rights to claim performance, late-payment charges for monetary obligations and
a contractual fine for non-monetary obligations. The defective stage can only
be reached by non-monitory obligations and it allows the beneficiary to claim
repair, or replacement while also being able to claim damages.

When the remedies in Figure 7 do not enable the beneficiary to achieve the
purpose of the obligation performance, the obligation is fundamentally breached,
resulting in the obligation reaching the stage of terminated. This can initiate the
right for the beneficiary to cancel the contract. The obligation can also be put
into the stage terminated at any time by the mutual agreement of the parties.
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Fig. 7. Transaction processing of obligations.

3.3 Interacting Contract Agents

The running case of Section 2 for renting out apartments is further refined by
developing UML sequence diagrams, [46] depicting the interaction protocols of
agents. The first sequence diagram of Figure 8 is the refinement for Figure 3(a)
about the initiation of a rental contract while the second sequence diagram of
Figure 9 pertains to Figure 3(b) about the rental contract termination.

In Figure 8, we assign a fictitious public key number that comprises four
characters for readability. The three entities to the left represent a contractual
agent and two personal agents for the lessor and lessee respectively. The fourth
entity denotes the blockchain into which events are registered. Furthermore, we
assume a smart-home scenario where the apartment has four agents assigned,
one for the smart lock and three for the gas-, water- and electricity-smart meters
respectively.
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Fig. 8. Initiation protocol of contractual agents.

The sequence diagram in Figure 8 commences with the contract agent send-
ing a message to the lessee agent about the obligation ob(dep) being active,
meaning that the deposit must be paid. Consequently, the lessee agent performs
the payment by invoking tx(dep, 7a30) to the blockchain, i.e., the deposit is held
by the contract agent. Note that usually a deposit is paid to a lessor’s account,
which is problematic as the lessor has the exclusive control over funds that he is
not entitled to unless there is damage done to the apartment. At times, the de-
posit is never paid back to the lessee, even when the apartment is in undamaged
condition. Still, in the case of a contract-agent wallet, the parties are forced to
find a consensus about the deposit.

The next message in Figure 8 is from the contract agent to the blockchain for
checking the unspent transaction output UTXO(7a30) to assure the deposit is
transferred to the contract-agent wallet onto the blockchain. The latter responds
with a confirmation – result(-B0.3) – indicating the payment to the contract-
agent’s public-key address on the blockchain.

For the formation of the transfer-act act1 in Figure 3, several types of infor-
mation must be collected. First, the contract agent sends an active obligation
message ob(pt) to the lessor agent for requesting pictures of the apartment con-
dition. The lessor agent responds by delivering those pictures. Next, value-query
messages qu(value) are sent by the contract agent to the gas-, water- and electric-
ity agents respectively, who respond with sending back the current smart-meter
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counts in result(value)-messages. The latter are used by the contract agent in
combination with the pictures to generate act1 that is subsequently recorded in
the blockchain.

Next, the contract agent sends an active obligation message ob(key) to the
lessor agent who subsequently sends another message order(transfer,31x7) to the
smart-key agent, i.e., the smart key to the apartment is now usable by the lessee.
Note that by using the blockchain for smart-key assignment, it is possible to per-
form an assignment to multiple persons and the lessor is aware of their identity.
Finally, the contract agent sends an active obligation message ob(rentpay) to
the lessee agent, after which the latter sends a transaction tx(rent,03m6) to the
blockchain, i.e., the recipient of the first monthly rent payment is the lessor.

Fig. 9. Termination protocol of contractual agents.

The termination protocol for the apartment rental contract in Figure 9 com-
mences with the contract agent sending an active obligation message ob(pic)
to the lessee agent who returns a set of pictures about the apartment condi-
tions. Next, the smart-meter values are requested with qu(value)-messages from
the gas-, water- and electricity agents respectively. The latter respond with re-
sult(value)-messages from the respective smart meters. Assuming the delivered
pictures about the apartment condition are accepted by the lessor, the contract
agent invokes the command act2(pic,value1,value2,value3). The generated act2
is recorder into the blockchain and the contract agent sends an active obliga-
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tion message ob(key) to the lessee agent, indicating the apartment smart key
must be returned to the lessor. Consequently, the lessee agent sends a message
order(transfer,03m6) to the smart-key agent.

The contract agent informs the lessor agent with the message right(damage
claim) that there should be a final confirming check for possible damage com-
pensation. We assume in Figure 9 that no damage compensation occurs and
subsequently, the contract agent sends an active obligation message ob(dep) to
the lessor for indicating the deposit must be paid back to the lessee. For that, the
lessor agent sends a transaction message tx(dep,31x7) to the blockchain. Finally,
the contract agent sends a check command UTXO(7a30) to the blockchain, af-
ter which the latter responds with the message result(-B0.3), i.e., the deposit has
successfully been returned to the lessee.

4 Manageability of Self-Aware Contracts

The aim of the Agrello-framework is to increase the productivity of information-
and value logistics. Important is an understanding of the lifecycle that must
be in place for creating, enacting, rolling back and orderly terminating SACs.
Consequently, Section 4.1 describes the SAC lifecycle, followed by Section 4.2
that focuses on the involvement of BDI-agents in the lifecycle. Finally, Section
4.3 discusses human-interaction means with the SAC lifecycle.

4.1 Lifecycle of Self-Aware Contracts

For the lifecycle in Figure 10, we use again BPMN notation. The lifecycle com-
mences with the need to establish a peer-to-peer (P2P) contract collaboration
between several parties. The first sub-process is for preparing [34] a contract
template that is equipped with service types and affiliated agent roles. Thus,
we assume a library exists of third-party generated rental contract templates
where predefined parameters are inserted, such as for the upper- and the lower
bound of rent that an apartment should be offered for. Next, the service types
are populated by concrete service-offers from agents that fill specific roles. For
the running case of this paper, the roles are lessor and lessee, a blockchain, the
smart key, and the utility agents for gas, water and electricity.

Using a SAC approach has advantages over the traditional renting situa-
tion as follows. In the latter case, the lessor usually determines who the util-
ity providers are and the lessee is on the receiving end paying to the lessor.
In the case of SACs, it is possible to avail specific roles and service types for
competing potential providers. For example, if a lessee is conscious about the
environment and disagrees with a preset gas agent, there can be provisions
to have environmentally friendly alternative providers compete for being gas-
service providers. Consequently, fine-tuned free-market competition during the
rental-contract preparation phase increases the likelihood of finding an optimal
service-provider quorum.
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Fig. 10. The Agrello-lifecycle of SACs.

The negotiation sub-process in Figure 10 allows the agents to set concrete
prices within the predefined ranges. After assembling a proto-contract, each
agent receives a copy for deciding on a negotiation outcome. There are three
decision options that may occur during the negotiation. First, the lessee agent
may disagree with a set monthly rent rate and proposes a different number in a
counteroffer. This implies that new copies must be assigned to each agent for a
new negotiation round. Second, an agent considers the proto-contract disagree-
able and collapses the negotiation. In this case, the lifeycle reaches the lifecycle
end. Third, all agents agree and create a SAC agent.

The initiation phase [35] in Figure 10 commences when the contract agent
exists but the establishment of a decentralized governance infrastructure (DGI)
is required for the subsequent enactment as well. Note that the initiation phase
matches with the sequence-diagram protocol of Figure 8. The DGI-establishment
involves the distribution of obligation sets that are derived from the contract
agent to the respective agents. Additionally, monitors are assigned together with
contract-monitoring agents (CMA) that observe if obligations are adhered to. In
cases of obligation breaches, a CMA reports to the contract agent and rollback
steps commence that we explain below. Finally, preparing for rental-contract
enactment means that private processes for each collaborating agent are set up
on a technical level and communication endpoints are established where clarity
exists on the meaning of exchanged heterogeneous data sets.

During the enactment phase in Figure 10, the lessee pays monthly apartment
rent to the blockchain. The earlier established CMAs monitor if the lessee agent
adheres to the deadlines of obligations. In case of an obligation violation [24, 35],
a voting procedure commences to establish if the obligation breach is fundamen-
tal, or if merely an obligation revision is required. For the running case, a breach
occurs when the lessee pays rent late or not at all. Assuming the rent payment
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includes also the payment of monthly utility costs, the voting involves the lessor
agent and the utility agents for gas, water and electricity. We assume the voting
power is determined by the proportional amount of payment that are part of the
monthly rent payment of the lessee.

In case the lessee refuses to pay, the voting outcome is a fundamental breach.
Consequently, the contract is renegotiated to hopefully clarify issues that result
in not paying rent. Note that a renegotiation involves a partial termination of the
flowing business semantics and a targeted rollback of the remaining subset into
the negotiation component. Still, the existing contract remains intact during the
renegotiation phase. If a renegotiation fails, the ongoing rental-contract business-
semantics flow is fully terminated and the involved agents are equally terminated.

If the lessee is late with the monthly rental payment to the blockchain, the
vote outcome is likely to demand payment on the one hand, and interest in
addition on the other hand. We assume revision of the obligation takes place
to see if it possibly does not match the rental context any longer, e.g., the
lessee receives salary later and consequently, can only pay monthly rent later
too. In that case, the obligation adjustment is inserted during a rollback to
the initiation phase and the ongoing contract continues. Finally, the full rental-
contract termination phase involves a takedown of the DGI and follows the
protocol of Figure 9. Thus, all agents are released from the collaboration and
equally terminated.

4.2 BDI-Agent Involvement

The agents shown in Figure 10 fulfill specific roles for the self-aware rental con-
tract. The contract agent (CA) operates on behalf of the housing agency and
coordinates the remaining agents after its creation at the end of the preparation
stage when the other agents of Figure 8 consent on a rental-contract establish-
ment. The responsibilities are to allow for deducing a DGI so that the lessor-
and the lessee agents comprise local sets of obligations. The CA also coordinates
the CMAs that observe locally on behalf of the CA if the local obligation sets
are adhered to. Furthermore, the CA has responsibilities during the initiation
phase of Figure 10 that follow the sequence diagram of Figure 8. During the
execution phase, the CA listens to the CMA and if the rent payment is not per-
formed in an orderly way, the responsibility of the former is to trigger a voting
procedure that leads to earlier explained rollback results. Finally, the CA also
captures the termination request for the rental contract of the lessor, or lessee
and triggers the overall DGI-dismantling. Essential CA-constraints are that the
roles of the contract template must all be populated in the preparation stage
with corresponding agents. The latter must reach a consensus so that a CA is
instantiated for a DGI-setup. Important is also that the data for act1 creation is
delivered as requested, i.e., pictures and gas-, water- and electricity values from
the utility agents. Another constraint is that all votes are cast as required during
the rollback phase.

The lessor- and lessee agents both have the responsibilities to populate a cor-
responding role with an affiliated service type in a contract template during the
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preparation phase. Next, both agents must participate in the negotiation phase
and provide counteroffers, disagreements, or agreements for consensus formation.

Both, lessor- and lessee agents, have the responsibility to cooperate for facts
collecting that leads to the establishment of act1 and act2 in accordance with
Figure 8 and Figure 9 respectively during the initiation phase. The lessor agent
has the responsibility to transfer the smart key to the lessee. During the execu-
tion phase, it is the responsibility of the lessee agent to pay monthly rent onto
the blockchain. When the latter obligation is not adhered to, the lessee agent is
obliged to cooperate with the rollback procedure and must either agree with a
new obligation to continue in the rental contract, or pay damage and compen-
sation if a fundamental breach occurs. The lessor agent has the responsibility
to cooperate in the rollback voting procedure if the CA detects a breach that a
CMA reports.

The constraint of the lessee agent is the ability to pay the deposit during
the initiation phase, the rent during the execution phase, possible damages and
compensations during the rollback phase. For the termination, the constraint for
the lessee agent is that the delivered photos display an apartment condition that
is similar to when the lessee moved in and if the condition is lower, the lessee
agent must pay compensation to the blockchain address of the lessor agent. The
constraint of the lessor agent during the initiation phase is delivering pictures to
the CA that document the apartment condition and fails to transfer the smart
key to the lessee within an acceptable time limit. During the termination phase,
the lessor agent must detect damages in the apartment within an acceptable
time limit.

The utility agents for gas-, water- and electricity have the responsibility to fill
their respective roles in the contract template during the preparation phases and
must report current meter values during the initiation phase. In case the lessee
agent fails to pay the rent where we assume the utility expenses are a part of
it, the utility agents must participate in the rollback voting procedure. Finally,
during the termination phase, the utility agents must again deliver meter values
for the finalization of act2 (Figure 9). The constraints are, that utility agents
fail to adhere to their responsibilities within given time limits.

The smart-key agent has the responsibility to accept being assigned to lesses
during the initiation phase and being transferred back to the lessor during the
termination phase. Otherwise, the smart-key agent does not have any additional
responsibilities during the SAC lifecycle of Figure 10. The only constraint for the
smart-key agent is to immediately respond to user-change commands. Finally,
the blockchain is not an agent but merely an immutable event record-ledger for
the rental contract lifecycle.

4.3 Means of Human Interaction

The organization model of Figure 11 shows human involvement in the collab-
oration for the running-case rental contract. An organization model is part of
the agent-oriented modeling notation [49] and denotes the relationships between
human- and BDI-agents. The arcs between the agents specify the relationship
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types. In Figure 11 we use Controls to show a subordinate relationship between
agents, IsPeerTo to define equal roles and IsBenevolentTo as a relationshp be-
tween self-interested agent roles. Additionally in Figure 11, we specify that a
utility agent can be either a gas-, water-, or electricity agent.

Contract
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Agent
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Agent
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Agent

Water
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Electricity
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Company

Lessor Lessee
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Fig. 11. The organizational model for the rental contract.

The human involvement as specified in Figure 11 takes place via dedicated
assisting BDI-agents. For example, the lessee agent engages in the rental contract
on behalf of the lessor, who is a human individual. The gas agent acts in the rental
contract on behalf of a utility company that provides gas to the apartment. The
respective assisting BDI-agents that act for human agents are under coordinating
control of the contract agent that are in turn under the control of a housing
company. Finally, the smart-key agent is under alternating control of the lessor-,
or the lessee agent with respect to shifting the human-agent ownership.

5 Trusting Contract Elements

Contract immutability and legal viability are related to several problems. Im-
mutability not only implies to store the machine-readable and agent-executable
contract with its obligations so that it cannot be changed. It is also necessary to
store the events, e.g., payments that affect contract-execution immutably. With
conventional contracts, these events are for example receipts, emails, or phone
calls, e.g., from lessor to lessee. Immutability of these events prevents situations
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where two parties claim the opposite about whether a payment is performed, or
not. It is also a prerequisite to allow for an agent-aided review of the contract
execution. A separate contract agent is fed with the contract in question and
connected to the event-storing repository. The agent commences in the past,
consumes relevant events and processes the obligations of the contract to the
present. Besides immutability of value, this entails that events are immutably
timestamped.

The remainder is structured as follow. Section 5.1 comprises essential ele-
ments for the setup of SACs. Section 5.2 gives technical details about executing
contracts. Section 5.3 describes additional trusted events for contract execution
and finally, Section 5.4 explains the contextual trustworthiness for contract in-
tegration.

5.1 Elements of Trust

In order to support the execution of self-aware smart-contracts with blockchain
technology, various elements are necessary. First of all, the contract has to be
signed by the contract parties. Essential elements for enacting blockchain en-
hanced self-aware smart-contracts are:

Identity: the contract parties must be unambiguously identifiable. Especially
the lessor in a rent contract wants assurance that the flat is used by the
person who (or who’s agent) reacts to the lessor’s offer. Assuming that one
person with a positive credit rating reacts to a flat offer while the identity
used for contract signing cannot be verified, the intended lessee could instead
let another person with insufficient credit rating move into the flat, e.g., a
friend, or family member.

Signature: conventional contracts require a hand written signature. To achieve
comparable, or better legal commitment, digital and cryptographically secure
signatures are necessary.

Events: as stated above, access to external events related to the contract obli-
gations is essential for automated execution. In case the contract agent is to
sense that a rent happens for a specific month, it either has to be externally
informed about such an event with a push message, or must be able to query
a blockchain that stores such events as a pull message. Alternatively, an agent
with blockchain connection to the blockchain relays the information transi-
tively. The different types of events are not necessarily stored on the same
blockchain as, e.g., sensor data from smart meters, or access permissions for
the smart lock may require a different blockchain.

Timestamp: the SAC together with agents and obligations considers external
events to process obligations, e.g., payments. To reason about delays and
deadlines, events consumed by the contract agent need to be time stamped.

Contract source code: the source code of the contract contains its obligation in a
formal and machine-readable notation. To guarantee immutability, the con-
tract source code and the corresponding hash must reside on the blockchain.
In case a contract party claims defective contract execution by the agent
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because of manipulated source code, an original copy must exist to resolve
such conflicts. Storing the hash on the blockchain is only sufficient if at least
one contract party provides source code with the same hash value. An edge
case occurs when both parties can not provide a copy of the contract.

5.2 Contract Execution

Regarding legal viability, it has to be considered where the execution of the
contract takes place. Examples for related issues are, the number of independent
nodes running the contract and the problem of on- versus off-chain execution.

Unlike Etherum smart contracts, SACs do not require external events, or
the progress of obligation executions to be stored on a blockchain. It is legally
sufficient to merely store transactions between contract parties on a blockchain.
Still, the current state of SAC execution can always be derived from blockchain-
stored information.

Processing the rent-payment obligation of Listing 1 requires handling logics
of deadlines. Thus, the obligation (l.1-4 ) states that the lessee (obligor) has to
pay monthly rent to the lessor (beneficiary). The time token (l.6 ) is stored in the
agents belief base to trigger the processing of the recurring o6 obligation. In an
agent-orient approach, the respective code is provided as a library, or module for
which Listing 2 provides an excerpt. In l.1-9: the plan handles the instantiation
of the rent payment obligation each first day of a month. In l.12-17:, to acquire
the date for the following month, this plan is used. The plan in l.20-30: is invoked
by lines 1-9 with the purpose to create an event inside the agent that triggers
the creation of a concrete obligation at the beginning of the following month.
Thus, the event triggers plan l.1-9 again. If the event occurs, a term such as in
Listing 1, l.6 is added to the belief base.

Listing 1. A monthly rent-payment obligation.

1 obligation(o6, lessee , lessor ,
2 date_precondition(year ,month ,1), pay(rent)
3 )[ recurring_deadline(date(year ,month ,10)),
4 state(new),recurring ].
5
6 time_token_for_recurring_obligation(o6,timeToken (2017, 2, 1)).

The logic of this micro lifecycle described in Listing 1 is based on the declar-
ative and logic programming facilities the Jason agent framework11 comprises.
Integrating the agent with the blockchain leads to a trade-off raising the question
of whether to run the contract agent on-, or off-chain.

Off-chain: running the SAC off-chain requires storage on a server for the ex-
ecution by the agent framework. This entails, that the agent framework provides
means for communicating with the blockchain. The Jason framework with its

11 More precisely: AgentSpeak is a logic- and declarative programming language. Jason
agents are written in AgentSpeak and running them means that the source code is
interpreted by the Jason framework.
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reasoning cycle is implemented in Java and allows for extending it with hand-
written code, i.e., using a library for interfacing with the blockchain. For this
to work, the blockchain has to provide an up-to-date API that also introduces
a dependency on it for the agent, not to speak of Java being involved. The off-
chain approach does not require any adaption, or change of the used blockchain,
but only the API.

Listing 2. Instantiation of the rent payment obligation each 1st day of a month.

1 +time_token_for_recurring_obligation(ObligationName , timeToken(OY,OM,OD))
2 <-
3 +obligation(ObligationName , Obligor , Beneficiary ,
4 date_precondition(OY,OM,OD), Task )[recurring , state(new)];
5 ?obligation(ObligationName , Obligor , Beneficiary ,
6 date_precondition(Y,M,D), Task )[ recurring]
7 ?getNextTimeToken(timeToken(OY, OM, OD),
8 date_precondition(Y,M,D), NewDate );
9 !create_event_for_recurring_obligation(ObligationName ,NewDate ).

10
11
12 +? getNextTimeToken(
13 timeToken(TY, TM, TD),
14 date_precondition(year ,month ,Day),
15 NewDate) : .number(Day) & TM <= 11
16 <-
17 NewDate = date(TY, TM +1, Day).
18
19
20 +! create_event_for_recurring_obligation(ObligationName ,
21 date(NY, NM, ND)) : sulfur.date(A,B,C) & a(NY,NM,ND) <= a(A,B,C)
22 <-
23 .concat(
24 "+ time_token_for_recurring_obligation (",
25 ObligationName ,
26 ",",
27 timeToken(NY, NM, ND),
28 ")",
29 Event);
30 .at("now +1 ms", Event).

On-chain: comparable to Ethereum smart contracts. For obligation driven
contracts, it is not necessary to write any state information to the blockchain.
The contract execution is driven by events such as payments that need to be
stored on the blockchain. Executing the contract requires keeping the execution
state in the memory of the machine/hardware for execution. The higher de-
gree of abstraction that a logic- and declarative programming language such as
AgentSpeak yields, introduces the necessity for a reasoning cycle, e.g., reacting
to percepts, and a reasoner for unifying terms. To run a SAC on-chain, these
components have to be implemented in the virtual machine of the blockchain
that requires developing a new language 12. This eliminates the need for API
integration into an agent. Another advantage is the encapsulation and hiding of
the hand-written code that comprises the mirco-lifecycle for general obligation
processing as in excerpt in Listing 2.

12 Another way to tackle this problem is introducing an intermediate language based
on π-calculus.
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An open issue is the relation between declarative and imperative program-
ming in smart contracts. The SAC language we aim for is based on obliga-
tions and a more static and declarative approach. This leaves open the question
whether logics like voting protocols/algorithms can also be covert this way.

The question arises which parties run the contract agent. On the one hand,
contract details may not be accessible to the public while on the other hand, the
idea of blockchain is to distribute information for tampering protection and trace-
ability. One solution is that each contract party runs a light node for contract-
code enactment that only stores those transactions related to the contract and
its parties.

5.3 Trusted Events

When a SAC is executed, not only events like payments are involved. The agent,
reasoning about obligations, also needs to keep track of fine grained information
bits. If a recurring obligation must be processed such as for a monthly rental
payment, the agent must create a concrete obligation13 each first of a month,
containing the according date (Listing 2 line 3).

The agent senses its environment checking the current date and recognizes
that the recurring obligation has to be instantiated since the date is the first of
the month. This creates additional information the contract agent requires to
appropriately process the obligations. In contrast to payment events and given
signatures, or value transfers, this information does not require storage in the
blockchain and can be restored by restarting the contract agent, e.g., starting a
second instance to review contract execution.

5.4 Contextual Trustworthiness

Self-aware contracts can be integrated with their context to different degrees.
For a rental contract, an especially high degree of integration is computing the
monthly utilities by reading the consumption of electricity and water from smart
meters. This raises difficulties on several levels.

Security: IoT devices have repeatedly been subject to serious security vulnera-
bilities14. Paying utilities automatically may cause inconveniences for a lessee

13 We clarify the terminology of recurring and concrete obligations. In a rental contract,
there is only one obligation for paying the rent monthly. However, for processing,
this obligation must be split into parts (instances) simplifying the task for the agent.

14

https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-

things-for-a-lot-of-websites-and-apps/

https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-

permanent-denial-of-service/

https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-

attack/

http://iotworm.eyalro.net/

https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/
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of a flat. The logics for recognizing and handling faulty sensor data must be
introduced to the contract agent. A privacy concern is the secure transfer of
sensitive measurement data.

Interoperability: when integrating technologies from different technical do-
mains15 such as software agents, blockchains, smart devices/IoT, a consid-
erable challenge is data exchange. This not only relates to syntactic inter-
operability so that exchanged data can be parsed by the counter-party with
correct data formats. The semantic interoperability for data exchange must
also be clarified, e.g., a temperature measured in ◦C is mistakenly inter-
preted as ◦F ?). Sound data exchange also involves architectural aspects.
The question arises if the contract agent receives the sensor data from an-
other software agent that acts as a proxy for the IoT devices and provides
a uniform interface, or is accessing the smart meters hard coded into the
agent.

Our notion of SACs is based on obligations and we refer to the P2P economy
throughout the white paper. Nevertheless, the idea of obligations stems from
contract law that not only covers P2P scenarios such as for the rental-contract
case. Obligations are also applicable for business-to-business scenarios. We antic-
ipate a framework that is scalable for business-to-business (B2B) cases without
considerable changes to the core concepts, e.g., sale of goods, or services.

6 Feasibility Evaluation

We map the running rent-contracting case of Section 2 into an evaluation that
comprises three parts. First, Section 6.1 gives an architecture of the Agrello
framework. Next, Section 6.2 shows code of the Agrello language for several as-
pects of the SAC, which includes examples for obligations and rights. Section 6.3
shows a conceptual Agrello graphical user-interface prototype that is currently
under development.

6.1 System Architecture

The Agrello-system architecture in Figure 12 we derive from from [37] where
the so-called eSourcing Reference Architecture (eSRA) is introduced for cross-
organizational process-aware collaboration. We use a simplified form of a UML-
component diagram model [4] for the architecture depiction. Briefly, eSourcing
establish outsourcing relationships by supporting matchmaking between offered
and requested process views [17] that allows for a stepwise collaboration evolu-
tion if contextual changes require it. Furthermore, in [32] we show how software
agents enable communication for conflict resolution in P2P- and process-aware
collaborations. These agents act autonomously on behalf of collaborating or-
ganizations a SAC orchestrates with the assurance that information used for

15 http://www.jot.fm/issues/issue_2006_11/article4/

http://www.jot.fm/issues/issue_2006_11/article4/
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conflict resolution is trustworthy. Note that business processes can be mapped
onto Solidity [52] for blockchain-based enactment.

Housing Company Utility Company

external layerexternal layer

conceptual layerconceptual layer
internal layer internal layer

Fig. 12. Agrello-system architecture in a simplified bi-lateral cross-organizational col-
laboration scenario.

The architecture in Figure 12 shows a set of components that are organized
with a layered architecture. We assume to the left and right are two respective
collaborating parties. However, the eSourcing approach scales so that Agrello
supports the P2P multi-party running case [15, 16] from Section 2. In the mid-
dle of Figure 12 is a component that comprises Agrello contract templates in a
repository hub [38]. The hub allows for finding contract templates that a GUI
displays in human-readable language during the preparation of a contract tem-
plate in correspondence to Figure 10. A user parameterizes the template and
a mapping creates a representation into an XML-based based equivalent based
on the eSourcing Markup Language (eSML) [39] that we extend with obliga-
tions and rights into AgrelloLanguage in accordance with Section 3. Note that
for the population and negotiation phases in accordance with Figure 10, the
collaboration components are employed.

The layers in Figure 12 are as follows. The external layer comprises a re-
spectively replicated collaboration component that synchronizes via a contained
coordination interface with the equal component of counter-parties. The col-
laboration component also serves as a security-ensuring gateway for P2P data
exchange. Furthermore, embedded are additional components to negotiate SACs
specified in AgrelloLanguage with affiliated obligations and rights. For that, func-
tionalities are necessary to perform reputation-, identity-, and action manage-
ment related to SAC involvement. The collaboration component also contains
BDI-agents that act on behalf of a concrete collaborating party, as we explain
above. A coordinator component assures during the enactment phase that SACs
align the execution on obligations, rights and the the process aspect.

The contract-template hub comprises several embedded components too.
Identity-management- and reputation management functionalities complement
the collaboration components of respective collaborating counter-parties. Bid-
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ding services receive auctioning- and tendering input from the collaboration man-
agement. To quickly deploy contracts, libraries for SAC templates, obligations
and rights exist. Important is also that the templates must be validated with
tool support for soundness, i.e., syntactic and semantic deficiencies elimination.

The conceptual layer is internal to collaborating parties and shielded by the
external layer from information exchange with counter-parties. The contained
SAC setup support comprises libraries with smart-contract parts, obligations
and rights that modeling tools can use for rapidly creating SACs. The composed
SAC is simulated and verified internally for soundness, i.e., for eliminating de-
sign errors. Note that simulation is inferior to verification as most likely not
all execution paths of a SAC are tested. In contrast, verification employs for-
mal methods and sophisticated tool support for a complete correctness check
of SACs. The setup support also comprises development tools for issuing BDI-
agents that externally represent a collaborating party. The translator component
relays between the external- and internal layer that we explain below.

As [37] shows in detail, the translator must reconcile different standards and
formats that are used in terms of modeling notations and information types.
While the external- and conceptual layers are provided by the Agrello framework,
the internal layer comprises concrete smart contract systems, e.g., Ethereum [53],
Lisk16, Hyperledger [12], Qtum17, and so on. Thus, we assume a blockchain ag-
nostic position and must map to a heterogeneous set of smart-contract languages,
mostly slight variations of Solidity [13].

6.2 Agrello Language

We show the high-level structure of the business-collaboration language we call
AgrelloLanguage that is derived from the research-driven and pre-existing eS-
ourcing Markup Language (eSML) [39] schema as a foundation. AgrelloLanguage
is given in Extensible Markup Language (XML) [9] to facilitate the building of
distributed applications in Clouds [11].

Figure 13 shows the structure of AgrelloLanguage as a SAC between col-
laborating parties, structuring the AgrelloLanguage content into the conceptual
blocks Who, Where, and What. Briefly, the Who block comprises constructs
for the resource definition and the data definition. Mapped onto the running
apartment-renting case, parts of the resource definition are the housing com-
pany, the utility smart meters, and related information. Note that BDI-agents
count as resources and are therefore defined with an unique identifier and uni-
versal resource identifier (URI) [26].

The Where block defines the business context in terms of used business, le-
gal, and geographical aspects are of importance for the contractual relations of
collaborating parties. In the context of the renting case, we assume Estonian ju-
risdiction holds. More concretely, the business-context provisions comprise obli-
gations and rights that are assigned to concrete process tasks we explain below.

16 https://lisk.io/
17 https://qtum.org/en/
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Fig. 13. AgrelloLanguage structure for SAC formulation.

The legal context provisions allow for setting general terms and conditions for a
contract.

In the What block, the current adoption of a formal process-specification
language permits the use of control-flow patterns for business-process defini-
tions that have semantic clarity [36]. Note that the process definitions comprises
constructs for linking to the resource- and data-definition sections of AgrelloLan-
guage that are both based on respective pattern collections [48, 47]. Furthermore,
life-cycle definitions [33] are for the business processes and contained tasks.

Since the Agrello framework is blockchain agnostic, the mapping assures
that heterogeneous organizational-internal smart-contract platforms can be inte-
grated cross-organizationally. Thus, the life-cycle-mapping establishes semantic
equivalence between the life-cycles of the cross-organizationally harmonized busi-
ness processes and of tasks from the opposing domains. Different labels of tasks
belonging to processes of opposing domains may be semantically equal. To es-
tablish a semantic equality, the second part of the mapping block focuses on
the mapping of task labels. The monitoring construct of Figure 13 specifies how
much of the enactment phase the service consumer perceives. We refer the reader
to [33] for further details.

For the running rental case, we give brief AgrelloLanguage code examples
for obligations and rights. Listing 3 shows an example for the obligation to pay
monthly rent. We assume the obligation has a name and unique ID, can not be
changed throughout the enactment of a SAC and involves monetary units for
the execution.

The state of the obligation in Listing 3 is enabled, i.e., the SAC enactment
is at a lifecycle stage where the obligation is active. Next, the parties of the
obligations define as a beneficiary the lessor. Note, we use the shrunk public key



Self-Aware Contracts 29

number of the lessor wallet from Figure 8. The same holds for the lessee who is
defined as the obligor and must pay the monthly rent. There is no third party
involved in this obligation. Following Figure 1, the obligation type is todo in that
the lessee has to act by concretely paying the rent.

Listing 3. Obligation example for paying monthly rent.

10 <obligation_rule tag_name =" monthly_rent" rule_id ="0001"

11 changeable ="false" monetary ="true">

12 <state >enabled </state >

13 <parties >

14 <benficiary >Lessor (31x7)</beneficiary >

15 <obligor >Lessee (03m6)</obligor >

16 <third_party >nil </ third_party >

17 </parties >

18 <obligation_type >todo </ obligation_type >

19 <precondition >

20 act1(signed )&key(transferred)

21 <precondition >

22 <action_type >payment (03m6 ,31x7,rent)</action_type >

23 <action_object >rent(monthly ,amount)<action_object >

24 <rule_conditions >month(lastday)</rule_conditions >

25 <remedy >

26 late_payment_interest(amount ,03m6 ,31x7)

27 </remedy >

28 </obligation_rule >

As a precondition for the obligation in Listing 3, the act1 must be signed
by the lessor and lessee while the latter must have access to the smart key for
being able to move into the apartment. The action type is the payment from the
wallet of the lessee to the lessor that constitutes the type rent. Additionally, and
conforming to Figure 1, the action object is defined as the rent with the qualifiers
it must be serviced monthly for a specific amount. The rule condition is that the
rent payment must occur on the last day of a month. Finally, a reference is
inserted in the obligation that a remedy for late rent payment exists where the
lessee must transfer a defined monetary amount to the lessor.

The right in Listing 4 comprises intersecting specification elements with an
obligation. As pointed out in Section 2, the main difference with an obligation is
the the beneficiary may waive a right. We assume in the right example of Listing
4 the hypothetical case the lessee has broken a television for which the lessor is
the owner.

The right is again defined by a corresponding name and ID. As the lessor
has the right to waive the right e.g., in case the lessee convinces the lessor the
television damage is not her fault even when no evidence exists, the right can
be changed on the fly and the compensation is set to false as the expectation
is a full replacement of the object. The right is in the lifecycle state enabled for
immediate enactment and the parties are similarly defined as in Listing 3.
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Corresponding to Figure 2, the type of the right is set to claim pertaining to
the lessor over the lessee for a replacement of the broken television. The assumed
precondition is again that act1 is signed and the smart-key handover to the lessee
took place. The action type is a replacement of the television that is defined as
an object by brand,type and serial number.

Listing 4. Right example for replacing a broken televsion.

10 <right_rule tag_name =" TV_replacement" rule_id ="0002"

11 changeable ="true" monetary ="false">

12 <state >enabled </state >

13 <parties >

14 <benficiary >Lessor (31x7)</beneficiary >

15 <obligor >Lessee (03m6)</obligor >

16 <third_party >nil </ third_party >

17 </parties >

18 <right_type >claim </right_type >

19 <precondition >

20 act1(signed )&key(transferred)

21 <precondition >

22 <action_type >replace(tv)</action_type >

23 <action_object >

24 tv(brand ,type ,serial_number)

25 <action_object >

26 <rule_conditions >deadline(date)</rule_conditions >

27 <remedy >

28 late_replacement_interest(amount ,31x7)

29 </remedy >

30 </right_rule >

We assume that the replace() command must be confirmed via mobile phone
by the lessee with a photo showing the television being delivered to the mobile
phone of the lessor. The obligation in Listing 4 also has a certain date set as a
deadline for the television replacement. Otherwise, the lessee must again service
a remedy payment of a certain amount to the wallet of the lessor.

6.3 Agrello User Interface

The objective of the Agrello-framework is to allow for an intuitive develop-
ment of SACs that are mapped to technical lower-level representations in Agrel-
loLanguage that is further mapped onto, e.g., Solidity to operate directly on a
blockchain. In the conceptual interface depiction of Figure 14, a template builder
shows to the left SAC-blocks to drag and drop into a contract window at the
bottom right. At the top right of Figure 14, a window for parameterizing the
blocks shows, e.g., the amount parameter is set to $1.750 as monthly rent.

The bottom left of Figure 14 depicts functions that represent actions in a con-
tract a respective party must carry out. For example, the variables and functions
are used in the contract template at the bottom right comprising the function
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Fig. 14. An intuitive Agrello graphical user interface for SAC-development.

rent involving specified variables lessor and lessee over a variable apartment.
More concretely, the contract window shows an assembled obligation in which
the defined lessor agrees to rent the apartment to the lessee during the specified
period for the amount of $1.750 per month.

7 Conclusions

This whitepaper presents a novel cross-organizational blockchain-agnostic frame-
work for peer-to-peer collaboration that is based on ca. 15 years of academic
research stemming from the first author. With the emergence of cyber-physical
systems, a potential arises to reduce costs and time spent on information- and
value-transfer logistics that so far humans have managed. Novel blockchain tech-
nology enabled smart contracts, combined with intelligent multi-agent systems
and internet-of-things devices, yield so-called self-aware contracts that allow for
a high degree of automation for such peer-to-peer collaborations. We demon-
strate the approach in a running case for renting an apartment that is first pre-
sented with traditional protocols for initiating and terminating a rental contract.
Since existing blockchain-based solutions lack essential constructs for specifying
legally binding, machine-readable contracts, we pragmatically formalize obliga-
tions and rights with an ontology. The running case is next mapped onto an
automated protocol where belief-desire-intention agents act on behalf of humans
who can consequently focus on decision making via mobile devices. For process-
ing obligations and rights, a high-level state-transition automata in Colored Petri
Nets shows the processing semantics involving a blockchain that assures event
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traceability. Next, AgentSpeak code-samples indicate the way how belief-desire-
intention agents act on behalf of humans to facilitate information- and value-
transfer logistics. Important is that the AgrelloLanguage constitutes a high-level,
cross-organizational, declarative way of formulating self-aware contracts that are
human readable and comprise specifications of obligations and rights, which are
mapped onto organization-internal smart-contract transaction-processing plat-
forms using, e.g., Solidity.

We discover that the combination of belief-desire-intention agents together
with the declarative AgrelloLanguage yields self-aware contracts where the for-
mer assure as a combined set trusted information is channelled into contract-
based collaborations. That way, the agents create a composed oracle governed
by a lifecycle-management layer. The latter comprises the stages for preparing
a self-aware contract template, initiating the setup phase of a collaboration, en-
acting a contract, managing rollbacks that are caused by e.g., a breach of an
obligation, or the deliverance of faulty information by an agent, and an orderly
termination of a self-aware contract collaboration.

In addition to employing agents that provide a degree of artificial intelli-
gence in a collaboration, human manageability of the Agrello framework we
achieve by providing a declarative smart-contract language that specifies cross-
organizational contract-collaborations. This AgrelloLanguage is based on a pre-
existing language that results from an EU-project for initially automating cross-
organizational production processes. The AgrelloLanguage provides extensions
by adopting human-readable specifications for obligations and rights, which are
core concepts for lawyers to establish traditional contracts for legal viability. Ad-
ditionally, an intuitive user interface allows for assembling self-aware contracts
with building blocks for subsequent parameterization.

Immutability for legal viability the Agrello framework achieves by employ-
ing blockchain capability. Contracting parties must be signed digitally after the
parties’ identities are authenticated. Furthermore, relevant external events are
stored on the blockchain together with their respective timestamps that are crit-
ical for assuring legal traceability. Also the actual contract code itself we store
on the blockchain to guarantee immutability. We recognize that by involving
agents, it is possible to process events off-chain and on-chain. That way, we
achieve a fine-tuned load balancing where only important events are stored in
the blockchain for non-repudiable traceability.

As future work we aim to develop a mapping from AgrelloLanguage obliga-
tions and rights to lower-level so-called smart contract languages such as Sol-
dity that operate directly on blockchain platforms. Furthermore, we investigate
a scalable agent-based solution for solving the Oracle problem pertaining to
blockchains where a scalable approach assures trusted information is channeled
into a self-aware contract collaboration. Important is that the Oracle must be
self-healing in that on the fly modifications of its constituents are possible in
cases of malevolent agent behavior, or contextual changes. Relevant for user
adoption is also the design of intuitive graphical user interfaces that allow for
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laymen such as lawyers, business people, and so on, the development of specific
contracts based on human readable templates.
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45. A. Rull, E. Täks, and A. Norta. Towards software-agent enhanced privacy protec-
tion. In Regulating eTechnologies in the European Union, pages 73–94. Springer,
2014.

46. J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual, The (2Nd Edition). Pearson Higher Education, 2004.

47. Nick Russell, Arthur HM Ter Hofstede, David Edmond, and Wil MP van der
Aalst. Workflow data patterns: Identification, representation and tool support. In
Conceptual Modeling–ER 2005, pages 353–368. Springer, 2005.

48. Nick Russell, Wil MP van der Aalst, Arthur HM ter Hofstede, and David Edmond.
Workflow resource patterns: Identification, representation and tool support. In
Advanced Information Systems Engineering, pages 216–232. Springer, 2005.

49. L. Sterling and K. Taveter. The art of agent-oriented modeling. MIT Press, 2009.
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